[1]孙名松 张立新 杜春燕.增量支持向量机算法研究[J].计算机技术与发展,2011,(05):40-43.
 SUN Ming-song,ZHANG Li-xin,DU Chun-yan.Research on Increasing Support Vector Machine Algorithms[J].,2011,(05):40-43.
点击复制

增量支持向量机算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年05期
页码:
40-43
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Research on Increasing Support Vector Machine Algorithms
文章编号:
1673-629X(2011)05-0040-04
作者:
孙名松 张立新 杜春燕
哈尔滨理工大学网络中心
Author(s):
SUN Ming-song ZHANG Li-xin DU Chun-yan
Network Information Center , Harbin University of Science and Technology
关键词:
支持向量机增量训练中心距离比值加权算法
Keywords:
support vector machine incremental training center distance ratio algorithm weighted algorithm
分类号:
TP391.4
文献标志码:
A
摘要:
在进行增量学习时,随着新增样本的不断加入,致使训练集规模不断扩大,消耗大量计算资源,寻优速度缓慢。在深入研究了支持向量分布的特点的基础上提出了分治加权增量支持向量机算法。该算法有效利用了广义KKT条件和中心距离比值,舍弃对后续训练影响不大的样本,得到边界支持向量集,对训练样本进行有效的淘汰。将所剩样本合并,进行加权处理,解决某些样本严重偏离所属的类别,对正常分布的样本不公平的问题。实验结果表明,该方法在保证分类精度的同时,能有效地提高训练速度
Abstract:
When carred on the increase studies, along with additional sample's unceasing joined, cause the training regulations scale unceasingly expanding, consumption of massive calculation resources, and the optimization speed is slow. Propose the partitioning weighting increase support vector machines algorithm in the deep research support vector distributed characteristic's foundation. This algorithm has effectively used the generalized KKT condition and center distance ratio, discards to the training sample that is not big influence, ob- tains the boundary support vector collection, carries on the effective elimination to the training sample. Then merge remain the sample, carries on weighting processing to solve the question that the certain sample serious deviae respective category, regarding normal distribu- tion sample unfair question. The experimental result indicated that this method can guarantee classification precision, can raise the train- ing speed effectively at the same time

相似文献/References:

[1]李雷 张建民.一种改善的基于支持向量机的边缘检测算子[J].计算机技术与发展,2010,(03):125.
 LI Lei,ZHANG Jian-min.An Improved Edge Detector Using the Support Vector Machines[J].,2010,(05):125.
[2]陈俏 曹根牛 陈柳.支持向量机应用于大气污染物浓度预测[J].计算机技术与发展,2010,(01):247.
 CHEN Qiao,CAO Gen-niu,CHEN Liu.Application of Support Vector Machine to Atmospheric Pollution Prediction[J].,2010,(05):247.
[3]李晶 姚明海.基于支持向量机的语义图像分类研究[J].计算机技术与发展,2010,(02):75.
 LI Jing,YAO Ming-hai.Research of Semantic Image Classification Based on Support Vector Machine[J].,2010,(05):75.
[4]姜鹤 陈丽亚.SVM文本分类中一种新的特征提取方法[J].计算机技术与发展,2010,(03):17.
 JIANG He,CHEN Li-ya.A New Feature Selection Method in SVM Text Categorization[J].,2010,(05):17.
[5]曹庆璞 董淑福 罗赟骞.网络时延的混沌特性分析及预测[J].计算机技术与发展,2010,(04):43.
 CAO Qing-pu,DONG Shu-fu,LUO Yun-qian.Chaotic Analysis and Prediction of Internet Time- Delay[J].,2010,(05):43.
[6]路川 胡欣杰.区域航空市场航线客流量预测研究[J].计算机技术与发展,2010,(04):84.
 LU Chuan,HU Xin-jie.Analysis of Regional Airline Passenger Forecast Title[J].,2010,(05):84.
[7]黄炜 黄志华.一种基于遗传算法和SVM的特征选择[J].计算机技术与发展,2010,(06):21.
 HUANG Wei,HUANG Zhi-hua.Feature Selection Based on Genetic Algorithm and SVM[J].,2010,(05):21.
[8]孙秋凤.microRNA计算识别中的模式识别技术[J].计算机技术与发展,2010,(06):97.
 SUN Qiu-feng.Pattern Recognition Technology for MicroRNA Identification[J].,2010,(05):97.
[9]刘振岩 王勇 陈立平 马俊杰 陈天恩.基于SVM的农业智能决策Web服务的研究与实现[J].计算机技术与发展,2010,(06):213.
 LIU Zhen-yan,WANG Yong,CHEN Li-ping,et al.Research and Implementation of Intelligence Decision Web Services Based on SVM for Digital Agriculture[J].,2010,(05):213.
[10]王李冬.一种新的人脸识别算法[J].计算机技术与发展,2009,(05):147.
 WANG Li-dong.A New Algorithm of Face Recognition[J].,2009,(05):147.

备注/Memo

备注/Memo:
黑龙江省自然科学基金(F9608)孙名松(1963-),男,教授,研究方向为网络安全、网络应用;张立新,硕士研究生,研究方向为网络安全、模式识别
更新日期/Last Update: 1900-01-01