[1]戴林 姜梅.基于半监督学习的入侵检测系统[J].计算机技术与发展,2011,(01):162-164.
 DAI Lin JIANG Mei.Semi-Supervised Learning-Based Network Intrusion Detection System[J].,2011,(01):162-164.
点击复制

基于半监督学习的入侵检测系统()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年01期
页码:
162-164
栏目:
安全与防范
出版日期:
1900-01-01

文章信息/Info

Title:
Semi-Supervised Learning-Based Network Intrusion Detection System
文章编号:
1673-629X(2011)01-0162-03
作者:
戴林 姜梅
青岛理工大学计算机工程学院
Author(s):
DAI Lin JIANG Mei
College of Computer Engineering,Qingdao Technique University
关键词:
半监督学习入侵检测SVM1040统计学习
Keywords:
semi-supervised learning intrusion detection SVM KMO statistical learning
分类号:
TP393.08
文献标志码:
A
摘要:
在入侵检测方法中,半监督学习作为一种特殊的学习形式,结合了监督学习与非监督学习在检测已知模式数据与未知模式数据方面各自的优点。据此,为进一步提高人侵检测系统的检测准确性,提出一种结合SVM与KMO(online k-means)算法各自优点的半监督入侵检测模型。该模型首先利用SVM算法对全部的输人数据进行区分,然后将其认为的合法数据集用KMO算法分类,以该结果作为决策模块的输入并做出最终的响应。实验显示,文中模型比单独使用其中的任一种方法具有更高的检测准确率。由此可见,该模型对于实际的入侵检测系统具有实用价值
Abstract:
In the intrusion detection method, semi-supervised learning as a special form of learning, combines the advantages of supervised learning and unsupervised learning in detecting the known and unknown mode of data. Accordingly, to improve the detection accuracy, proposed a semisupervised intrusion detection model that integrates the respective advantages of SVM and KMO ( online k-means). In this model,firstly use the SVM algorithm to filter all the input data, then the considered legitimate data is classified with KMO, so the decision-making module can respond the final input data. Experiments show that the model has a higher detection accuracy than use each of them alone. Thus, the model has practical value for real intrusion detection system

相似文献/References:

[1]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(01):143.
[2]马志远,曹宝香.改进的决策树算法在入侵检测中的应用[J].计算机技术与发展,2014,24(01):151.
 MA Zhi-yuan,CAO Bao-xiang.Application of Improved Decision Tree Algorithm in Intrusion Detection System[J].,2014,24(01):151.
[3]陈锦禾 沈洁.基于信息熵的主动学习半监督分类研究[J].计算机技术与发展,2010,(02):110.
 CHEN Jin-he,SHEN Jie.Active Learning Based on Information Entropy for Semi- supervised Classification[J].,2010,(01):110.
[4]高峥 陈蜀宇 李国勇.混合入侵检测系统的研究[J].计算机技术与发展,2010,(06):148.
 GAO Zheng,CHEN Shu-yu,LI Guo-yong.Research of a Hybrid Intrusion Detection System[J].,2010,(01):148.
[5]林英 张雁 欧阳佳.日志检测技术在计算机取证中的应用[J].计算机技术与发展,2010,(06):254.
 LIN Ying,ZHANG Yan,OU Yang-jia.Application of Log Testing Technology in Computer Forensics[J].,2010,(01):254.
[6]李钦 余谅.基于免疫遗传算法的网格入侵检测模型[J].计算机技术与发展,2009,(05):162.
 LI Qin,YU Liang.Grid Intrusion Detection Model Based on Immune Genetic Algorithm[J].,2009,(01):162.
[7]黄世权.网络存储安全分析[J].计算机技术与发展,2009,(05):170.
 HUANG Shi-quan.Analysis of Network Storage's Safety[J].,2009,(01):170.
[8]李睿 肖维民.基于孤立点挖掘的异常检测研究[J].计算机技术与发展,2009,(06):168.
 LI Rui,XIAO Wei-min.Research on Anomaly Intrusion Detection Based on Outlier Mining[J].,2009,(01):168.
[9]胡琼凯 黄建华.基于协议分析和决策树的入侵检测研究[J].计算机技术与发展,2009,(06):179.
 HU Oiong-kai,HUANG Jian-hua.Intrusion Detection Based on Protocol Analysis and Decision Tree[J].,2009,(01):179.
[10]汪世义.基于优化支持向量机的网络入侵检测技术研究[J].计算机技术与发展,2009,(07):177.
 WANG Shi-yi.Network Intrusion Detection Based on Improved Support Vector Machine[J].,2009,(01):177.

备注/Memo

备注/Memo:
戴林(1985-),男,山东青岛人,硕士研究生,研究方向为信息安全;姜梅,博士,副教授,研究方向为人侵检测与网络安全
更新日期/Last Update: 1900-01-01