[1]刘悦 郭拯危.基于小波支持向量机的P2P网络流量识别算法[J].计算机技术与发展,2010,(10):107-110.
 LIU Yue,GUO Zheng-wei.Algorithm for P2P Network Traffic Identification Based on Wavelet SVM[J].,2010,(10):107-110.
点击复制

基于小波支持向量机的P2P网络流量识别算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2010年10期
页码:
107-110
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Algorithm for P2P Network Traffic Identification Based on Wavelet SVM
文章编号:
1673-629X(2010)10-0107-04
作者:
刘悦 郭拯危
河南大学计算机与信息工程学院
Author(s):
LIU YueGUO Zheng-wei
Computer Science and Technology College,Henan University
关键词:
支持向量机小波P2P网络流量
Keywords:
SVM wavelet P2P network traffic
分类号:
TP393
文献标志码:
A
摘要:
对等网络技术引起了广泛关注,其典型的应用有文件共享、即时通信等。为了更好地合理使用、规划P2P网络资源,建立P2P流量识别模型具有十分重要的理论意义和现实价值。提出了一种基于小波支持向量机相结合的P2P流量识别模型,将小波分析中多尺度的学习方法和SVM的优点结合起来,通过小波分析与SVM方法紧致结合,引入满足小波构架和Mercer定理的小波基函数来构造SVM的核函数,建立小波支持向量机的P2P识别算法。实验结果表明该算法能够有效地提高P2P网络流量识别的精度
Abstract:
Recently,there has been a growing interest in the potential use of peer to peer computing in many applications such as file sharing,instant communication.Therefore,to realize their potential,there is a need of a P2P traffic identification algorithm that facilities the deployment of a network traffic that is optimized in terms of network bandwith.Focuses on developing a novel P2P traffic prediction using wavelet support vector machine.Through the wavelet analysis combined with the SVM method of compact,introduced to meet the wavelet framework and Mercer theorem to construct the wavelet function SVM kernel function,wavelet support vector machines to establish P2P identification algorithm.Experimental results show that the algorithm can effectively improve the accuracy of P2P network traffic identification

相似文献/References:

[1]李雷 张建民.一种改善的基于支持向量机的边缘检测算子[J].计算机技术与发展,2010,(03):125.
 LI Lei,ZHANG Jian-min.An Improved Edge Detector Using the Support Vector Machines[J].,2010,(10):125.
[2]陈俏 曹根牛 陈柳.支持向量机应用于大气污染物浓度预测[J].计算机技术与发展,2010,(01):247.
 CHEN Qiao,CAO Gen-niu,CHEN Liu.Application of Support Vector Machine to Atmospheric Pollution Prediction[J].,2010,(10):247.
[3]李晶 姚明海.基于支持向量机的语义图像分类研究[J].计算机技术与发展,2010,(02):75.
 LI Jing,YAO Ming-hai.Research of Semantic Image Classification Based on Support Vector Machine[J].,2010,(10):75.
[4]郑江云 江巨浪.基于信噪比的自适应双彩色图像水印算法[J].计算机技术与发展,2010,(02):160.
 ZHENG Jiang-yun,JIANG Ju-lang.An Algorithm of Adaptive Double Color Digital Image Watermarking Based on SNR[J].,2010,(10):160.
[5]姜鹤 陈丽亚.SVM文本分类中一种新的特征提取方法[J].计算机技术与发展,2010,(03):17.
 JIANG He,CHEN Li-ya.A New Feature Selection Method in SVM Text Categorization[J].,2010,(10):17.
[6]曹庆璞 董淑福 罗赟骞.网络时延的混沌特性分析及预测[J].计算机技术与发展,2010,(04):43.
 CAO Qing-pu,DONG Shu-fu,LUO Yun-qian.Chaotic Analysis and Prediction of Internet Time- Delay[J].,2010,(10):43.
[7]路川 胡欣杰.区域航空市场航线客流量预测研究[J].计算机技术与发展,2010,(04):84.
 LU Chuan,HU Xin-jie.Analysis of Regional Airline Passenger Forecast Title[J].,2010,(10):84.
[8]黄炜 黄志华.一种基于遗传算法和SVM的特征选择[J].计算机技术与发展,2010,(06):21.
 HUANG Wei,HUANG Zhi-hua.Feature Selection Based on Genetic Algorithm and SVM[J].,2010,(10):21.
[9]孙秋凤.microRNA计算识别中的模式识别技术[J].计算机技术与发展,2010,(06):97.
 SUN Qiu-feng.Pattern Recognition Technology for MicroRNA Identification[J].,2010,(10):97.
[10]刘振岩 王勇 陈立平 马俊杰 陈天恩.基于SVM的农业智能决策Web服务的研究与实现[J].计算机技术与发展,2010,(06):213.
 LIU Zhen-yan,WANG Yong,CHEN Li-ping,et al.Research and Implementation of Intelligence Decision Web Services Based on SVM for Digital Agriculture[J].,2010,(10):213.
[11]颜景斌 伊戈尔·艾杜阿尔达维奇.基于连续小波和支持向量机分类音乐类型[J].计算机技术与发展,2008,(12):19.
 YAN Jing-bin,IGOR. Kheidorov.Musical Genre Classification Based on Continuous Wavelet and Support Vector Machines[J].,2008,(10):19.

备注/Memo

备注/Memo:
刘悦(1977-),男,河南开封人,助理工程师,硕士研究生,研究方向为P2P网络、网络流量. 郭拯危,教授,研究方向为计算机网络、信息安全
更新日期/Last Update: 1900-01-01