[1]张霞 葛芦生.图像中心点预标定方法研究与应用[J].计算机技术与发展,2007,(03):44-47.
 ZHANG Xia,GE Lu-sheng.Application and Research on Pre - Calibration of Image Center[J].,2007,(03):44-47.
点击复制

图像中心点预标定方法研究与应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2007年03期
页码:
44-47
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Application and Research on Pre - Calibration of Image Center
文章编号:
1673-629X(2007)03-0044-04
作者:
张霞1 葛芦生2
[1]安徽工业大学计算机学院[2]安徽工业大学电气学院
Author(s):
ZHANG Xia GE Lu-sheng
[1]School of Computer Science, Anhui University of Technology[2]School of Electric Engineering & Information, Anhui University of Technology
关键词:
摄像机标定特征点图像中心点
Keywords:
camera calibration feature point image center
分类号:
TP391
文献标志码:
A
摘要:
在应用视觉测量系统中,视觉传感器即CCD摄像机的标定是必要的步骤。目前大部分标定算法都需要事先给出图像中心点,文中讨论该参数的求取方法。介绍了目前几种常用的图像中心的标定方法,有重点地介绍了各种方法的原理和实现流程,对其实现原理的复杂性、实验仪器的精密性、操作方法的难易度进行了综合比较,最后给出相应的实验结果及其结论。对各种视觉测量系统及摄像机标定精度要求不同的场合,可以根据其实验条件及要求选取最合适的方法进行图像中心点的求取
Abstract:
Calibration is a necessary step before applying photics sensor in measurement system. Recently most methods of camera calibration need to take the image center as a known parameter ahead. This paper discussed several common methods to get the parameter, and introduced theories and how to implement them emphasized their principles and realization flow, compared comprehensively the complexity of the principle, the precision of experiment instrument, the degree of difficulty of the operation methods, finally gave the results and conclusion. In terms of diverse vision measurement systems and CCD camera calibration occasions requiring different precision, regarding to the experiment condition and requirement, can choose a most feasible method to get the image center

相似文献/References:

[1]黄艳 赵越.3D靶标的摄像机三步标定算法与实现[J].计算机技术与发展,2010,(01):135.
 HUANG Yan,ZHAO Yue.Algorithm and Realization of Three-step Camera Calibration Based on 3D-Target[J].,2010,(03):135.
[2]杨丹 孙向南 张小洪.一种分层渐进匹配的鲁棒估计算法[J].计算机技术与发展,2009,(06):36.
 YANG Dan,SUN Xiang-nan,ZHANG Xiao-hong.A Robust Estimating Algorithm Based on Layered Progressive Matching[J].,2009,(03):36.
[3]张铖伟 王彪 徐贵力.摄像机标定方法研究[J].计算机技术与发展,2010,(11):174.
 ZHANG Cheng-wei,WANG Biao,XU Gui-li.A Study on Classification of Camera Calibration Methods[J].,2010,(03):174.
[4]白茹意 周明全 邓擎琼.基于ICP和CPD的颅骨自动配准算法[J].计算机技术与发展,2011,(02):120.
 BAI Ru-yi,ZHOU Ming-quan,DENG Qing-qiong.Algorithm for Automated Skull Registration Based on ICP and CPD[J].,2011,(03):120.
[5]徐海峰,秦茂玲,刘辉.一种基于特征点分割的三维模型检索方法[J].计算机技术与发展,2013,(01):71.
 XU Hai-feng,QIN Mao-ling,LIU Hui.3D Model Retrieval Method Based on Segmentation of Feature Point[J].,2013,(03):71.
[6]李欣,董建园.单目视觉测距在移动机器人的应用[J].计算机技术与发展,2013,(11):247.
 LI Xin,DONG Jian-yuan.Application of Monocular Vision Measurement in Mobile Robot[J].,2013,(03):247.
[7]肖秦琨,罗丹,肖秦汉.基于多视角视频的运动重建[J].计算机技术与发展,2014,24(02):84.
 XIAO Qin-kun[],LUO Dan[],XIAO Qin-han[].Motion Reconstruction Based on Multi-view Video[J].,2014,24(03):84.
[8]侯建,鄂旭,夏齐,等.移动机器人立体视觉高精度标定技术[J].计算机技术与发展,2014,24(02):92.
 HOU Jian[],E Xu[],XIA Qi[],et al.A High-accuracy Calibration Technique of Stereo Vision for Mobile Robot[J].,2014,24(03):92.
[9]蒋中强,胡栋. 一种有效的基于消失点的摄像机自标定方法[J].计算机技术与发展,2014,24(09):54.
 JIANG Zhong-qiang,HU Dong. An Effective Camera Self-calibration Method Based on Vanishing Points[J].,2014,24(03):54.
[10]沈玲[],王年[]. 基于图的谱系数夹角的特征点匹配[J].计算机技术与发展,2015,25(12):68.
 SHEN Ling[],WANG Nian[]. Feature Points Matching Based on Angle between Spectral Coefficient of Images[J].,2015,25(03):68.

备注/Memo

备注/Memo:
安徽省教育厅资助项目(2004Jq130)张霞(1982-),女,安徽宿松县人,硕士研究生.研究方向为图像处理、计算机视觉等;葛芦生,博士,教授,研究方向为计算机视觉、人工智能等
更新日期/Last Update: 1900-01-01