[1]马忠宝 刘冠蓉.基于支持向量机的中文文本分类模型研究[J].计算机技术与发展,2006,(11):70-72.
 MA Zhong-bao,LIU Guan-rong.Research on Chinese Text Classification Model Based on SVM[J].,2006,(11):70-72.
点击复制

基于支持向量机的中文文本分类模型研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2006年11期
页码:
70-72
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Research on Chinese Text Classification Model Based on SVM
文章编号:
1673-629X(2006)11-0070-03
作者:
马忠宝 刘冠蓉
武汉理工大学计算机科学与技术学院
Author(s):
MA Zhong-bao LIU Guan-rong
School of Computer Science and Technology, Wuhan University of Technology
关键词:
支持向量机文本分类模型
Keywords:
support vector machine text classification model
分类号:
TP18
文献标志码:
A
摘要:
支持向量机是在统计学习理论基础上发展起来的新一代学习算法,适宜构造高维有限样本模型,具有很好的分类精度和泛化性能。文中介绍了中文文本分类过程,将支持向量机应用于中文文本分类模型中,对分类器参数选择进行了分析和讨论。实验分析表明,该系统在较小训练集条件下可以取得较好的分类效果
Abstract:
Support vector machine(SVM) is a new learning algorithm based on statistics theory , and it is proved very useful for text classification. In this paper a model of Chinese text model based on SVM is built and different type of kernel functions is used. According to the experiment, it is showed that this model has good result for text clas.sification

相似文献/References:

[1]田昕辉 李成基.带有短语切分的中文文本分类方法[J].计算机技术与发展,2010,(01):5.
 TIAN Xin-hui,LEE Sung-kee.Phrase Segmentation for Chinese Text Classification[J].,2010,(11):5.
[2]李雷 张建民.一种改善的基于支持向量机的边缘检测算子[J].计算机技术与发展,2010,(03):125.
 LI Lei,ZHANG Jian-min.An Improved Edge Detector Using the Support Vector Machines[J].,2010,(11):125.
[3]陈俏 曹根牛 陈柳.支持向量机应用于大气污染物浓度预测[J].计算机技术与发展,2010,(01):247.
 CHEN Qiao,CAO Gen-niu,CHEN Liu.Application of Support Vector Machine to Atmospheric Pollution Prediction[J].,2010,(11):247.
[4]李晶 姚明海.基于支持向量机的语义图像分类研究[J].计算机技术与发展,2010,(02):75.
 LI Jing,YAO Ming-hai.Research of Semantic Image Classification Based on Support Vector Machine[J].,2010,(11):75.
[5]曹庆璞 董淑福 罗赟骞.网络时延的混沌特性分析及预测[J].计算机技术与发展,2010,(04):43.
 CAO Qing-pu,DONG Shu-fu,LUO Yun-qian.Chaotic Analysis and Prediction of Internet Time- Delay[J].,2010,(11):43.
[6]路川 胡欣杰.区域航空市场航线客流量预测研究[J].计算机技术与发展,2010,(04):84.
 LU Chuan,HU Xin-jie.Analysis of Regional Airline Passenger Forecast Title[J].,2010,(11):84.
[7]周瑛 张铃.有限混合模型在文本分类中的应用研究[J].计算机技术与发展,2010,(06):18.
 ZHOU Ying,ZHANG Ling.Study of Application of Finite Mixture Model in Text Classification[J].,2010,(11):18.
[8]黄炜 黄志华.一种基于遗传算法和SVM的特征选择[J].计算机技术与发展,2010,(06):21.
 HUANG Wei,HUANG Zhi-hua.Feature Selection Based on Genetic Algorithm and SVM[J].,2010,(11):21.
[9]孙秋凤.microRNA计算识别中的模式识别技术[J].计算机技术与发展,2010,(06):97.
 SUN Qiu-feng.Pattern Recognition Technology for MicroRNA Identification[J].,2010,(11):97.
[10]刘振岩 王勇 陈立平 马俊杰 陈天恩.基于SVM的农业智能决策Web服务的研究与实现[J].计算机技术与发展,2010,(06):213.
 LIU Zhen-yan,WANG Yong,CHEN Li-ping,et al.Research and Implementation of Intelligence Decision Web Services Based on SVM for Digital Agriculture[J].,2010,(11):213.
[11]姜鹤 陈丽亚.SVM文本分类中一种新的特征提取方法[J].计算机技术与发展,2010,(03):17.
 JIANG He,CHEN Li-ya.A New Feature Selection Method in SVM Text Categorization[J].,2010,(11):17.
[12]陈锦禾 范新 沈闻 沈洁.基于情感词识别的BBS情感分类研究[J].计算机技术与发展,2009,(07):120.
 CHEN Jin-he,FAN Xin,SHEN Wen,et al.Research on Sentiment Classification of BBS Reviews Based on Identifying Words with Polarity[J].,2009,(11):120.
[13]晋幼丽 周明全 王学松.SVM和K-means结合的文本分类方法研究[J].计算机技术与发展,2009,(11):35.
 JIN You-li,ZHOU Ming-quan,WANG Xue-song.Research on Text Classification Method of SVM and K - means[J].,2009,(11):35.
[14]张苗 张德贤.多类支持向量机文本分类方法[J].计算机技术与发展,2008,(03):139.
 ZHANG Miao,ZHANG De-xian.Research on Text Categorization Based on. M- SVMs[J].,2008,(11):139.
[15]李妍坊,许歆艺,刘功申. 面向情感倾向性识别的特征分析研究[J].计算机技术与发展,2014,24(09):33.
 LI Yan-fang,XU Xin-yi,LIU Gong-shen. Research on Feature Analysis Oriented Text Sentiment Identification[J].,2014,24(11):33.
[16]李琼,陈利. 一种改进的支持向量机文本分类方法[J].计算机技术与发展,2015,25(05):78.
 LI Qiong CHEN Li. An Improved Text Classification Method for Support Vector Machine[J].,2015,25(11):78.

备注/Memo

备注/Memo:
马忠宝(1977-),男,安徽淮南人,硕士研究生,研究方向为智能计算、机器学习;刘冠蓉,教授,研究方向为并行算法、网络计算
更新日期/Last Update: 1900-01-01