[1]杨宝华.基于粗集的决策树构建的探讨[J].计算机技术与发展,2006,(08):83-84.
 YANG Bao-hua.Discussion of Constructing Decision Tree Based on RS[J].,2006,(08):83-84.
点击复制

基于粗集的决策树构建的探讨()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2006年08期
页码:
83-84
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Discussion of Constructing Decision Tree Based on RS
文章编号:
1673-629X(2006)08-0083-02
作者:
杨宝华
安徽农业大学信息与计算机学院
Author(s):
YANG Bao-hua
College of Information and Computer, Anhui Agriculture University
关键词:
粗集决策树近似精度
Keywords:
rough set decision tree approximation quality
分类号:
TP301.6
文献标志码:
A
摘要:
决策树是对未知数据进行分类预测的一种方法。自顶向下的决策树生成算法关键是对结点属性值的选择。近似精度是RS中描述信息系统模糊程度的参量,能够准确地刻画粗集。文中在典型的ID3算法的基础上提出了基于RS的算法。该算法基于近似精度大的属性选择根结点,分支由分类产生。该算法计算简单,且分类使决策树和粗集更易理解
Abstract:
The decision tree is a kind of method to classify to predict for the unknown data. The key of policy- making tree production algorithm which is from top to bottom is the pitch point attribute value. The approximation quality describes parameter of the information system fuzzy degree in RS,and it portrays RS accurately. The algorithm on the basis of RS is proposed in this paper on the basis of typical ID3 algorithm, which chooses root on the basis of approximation quality. Classification produces branch. This algorithm is simple in calculation,and classification makes decision tree and RS easy to be understood

相似文献/References:

[1]杨静 张楠男 李建 刘延明 梁美红.决策树算法的研究与应用[J].计算机技术与发展,2010,(02):114.
 YANG Jing,ZHANG Nan-nan,LI Jian,et al.Research and Application of Decision Tree Algorithm[J].,2010,(08):114.
[2]耿波 仲红 徐杰 闫娜娜.用关联分析法对负荷预测结果进行二次处理[J].计算机技术与发展,2008,(04):171.
 GENG Bo,ZHONG Hong,XU Jie,et al.Using Correlation Analysis to Treat Load Forecasting Results[J].,2008,(08):171.
[3]胡琼凯 黄建华.基于协议分析和决策树的入侵检测研究[J].计算机技术与发展,2009,(06):179.
 HU Oiong-kai,HUANG Jian-hua.Intrusion Detection Based on Protocol Analysis and Decision Tree[J].,2009,(08):179.
[4]王园园 倪志伟 赵裕啸 伍章俊.基于决策树的模糊聚类评价算法及其应用[J].计算机技术与发展,2009,(09):232.
 WANG Yuan-yuan,NI Zhi-wei,ZHAO Yu-xiao,et al.Fuzzy Clustering Evaluation Algorithm Based on Decision Tree and Application[J].,2009,(08):232.
[5]李广水 郑滔 孙梅.基于分形维的决策树构建及应用研究[J].计算机技术与发展,2009,(12):5.
 LI Guang-shui,ZHENG Tao,SUN Mei.Research of Decision Tree Design and Application Based on Fractal Dimension[J].,2009,(08):5.
[6]周迪民 段国云.地理信息系统属性数据不确定性的研究[J].计算机技术与发展,2009,(12):174.
 ZHOU Di-min,DUAN Guo-yun.Study on Attribute Data Uncertainty in GIS[J].,2009,(08):174.
[7]石瑛 胡学钢 方磊.基于决策树的多特征语音情感识别[J].计算机技术与发展,2009,(01):147.
 SHI Ying,HU Xue-gang,FANG Lei.Research of Speech Emotion Recognition Based on Decision Tree and Acoustic Features[J].,2009,(08):147.
[8]李霞.ID3分类算法在银行客户流失中的应用研究[J].计算机技术与发展,2009,(03):158.
 LI Xia.ID3 Applying to Loss of Bank Clients[J].,2009,(08):158.
[9]马菁 顾景文.决策树在软件测试用例生成中的应用[J].计算机技术与发展,2008,(02):66.
 MA Jing,GU Jing-wen.Application of Decision Tree on Software Test Case Generation[J].,2008,(08):66.
[10]汪小燕 杨思春.一种基于分辨矩阵的新的属性约简算法[J].计算机技术与发展,2008,(02):77.
 WANG Xiao-yan,YANG Si-chun.A New Algorithm for AttributeReduction Based on Discernible Matrix[J].,2008,(08):77.

备注/Memo

备注/Memo:
安徽省教育厅资助项目(2003kj117);高校青年基金资助项目(2003)杨宝华(1974-),女,安徽合肥人,讲师,硕士,研究方向为粗糙集、数据挖掘
更新日期/Last Update: 1900-01-01