[1]张志鹏,周井泉.基于改良蜂群算法的 Web 服务组合优化方法[J].计算机技术与发展,2024,34(03):64-69.[doi:10. 3969 / j. issn. 1673-629X. 2024. 03. 010]
 ZHANG Zhi-peng,ZHOU Jing-quan.Web Service Composition Optimization Method Based on Modified Artificial Bee Colony[J].,2024,34(03):64-69.[doi:10. 3969 / j. issn. 1673-629X. 2024. 03. 010]
点击复制

基于改良蜂群算法的 Web 服务组合优化方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
34
期数:
2024年03期
页码:
64-69
栏目:
软件技术与工程
出版日期:
2024-03-10

文章信息/Info

Title:
Web Service Composition Optimization Method Based on Modified Artificial Bee Colony
文章编号:
1673-629X(2024)03-0064-06
作者:
张志鹏周井泉
南京邮电大学 电子与光学工程学院、柔性电子(未来技术)学院,江苏 南京 210003
Author(s):
ZHANG Zhi-pengZHOU Jing-quan
School of Electronics and Optical Engineering,School of Flexible Electronics ( Future Technology) ,Nanjing University of Posts and Telecommunications,Nanjing 210003,China
关键词:
云计算Web 服务组合蜂群算法QoS 属性混沌映射
Keywords:
cloud computingWeb service compositionbee colony algorithmQoS attributechaos mapping
分类号:
TP301
DOI:
10. 3969 / j. issn. 1673-629X. 2024. 03. 010
摘要:
为提高 Web 组合优化算法的开发能力和运行结果的适应度、稳定性,以满足用户对 Web 服务的服务质量( Qualityof Service,QoS) 需求,提出了一种基于 QoS 模型和改良蜂群算
法( modified Artificial Bee Colony,mABC) 的 Web 服务组合优化方法。 构建应用于 Web 服务组合优化问题的 QoS 顺序数学模型,使用基于混沌的对立学习方法,在进程运行的初
始化阶段生成更好的初始群体,在蜂群算法的雇佣蜂阶段和围观蜂阶段使用新的相位搜索方程和围观搜索策略,有效地提高蜂群算法的 探 测 能 力 和 开 发 能 力。 将改良蜂群算法
与 人 工蜂群算法 ( Artificial Bee Colony, ABC )、 差 分 进 化 算 法(Differential Evolution,DE) 、改进灰狼优化算法( Modified Grey Wolf Optimizer,MGWO) 、最优导向人工蜂群算
法( Guided -best Artificial Bee Colony,GABC) 和改进人工蜂群算法(Improved Artificial Bee Colony, IABC) 进行了多次对比实验。 实验结果表明,改良蜂群算法尽管在执行时间方面比其余算法都要略微长一些,但它在更为重要的适应度、稳定性方面都优于其余几种对比算法。
Abstract:
In order to improve the development capability of Web Combinatorial optimization algorithm and the adaptability and stabilityof the running results, and meet the user ’ s demand for quality of service ( QoS ) of Web services, we propose a combinatorialoptimization method of Web services based on QoS model and modified Artificial Bee Colony ( mABC ) . The QoS sequentialmathematical model applied to the combinatorial optimization problem of Web services is constructed. The chaos based opposite learningmethod is used to generate a better initial population in the initialization phase of the process operation. New phase search equations andspectator search strategies are used in the hire bee phase and spectator bee phase of the bee colony algorithm to effectively improve the detection and development capabilities of the bee colony algorithm, modified Artificial Bee Colony, Artificial Bee Colony ( ABC ) ,Differential Evolution ( DE ) , Modified Grey Wolf Optimizer ( MGWO ) , Guided - best Artificial Bee Colony ( GABC ) , ImprovedArtificial Bee Colony
?( IABC) algorithms are compared and tested multiple times. The experiments show that although the modifiedABC has slightly longer execution time than that of other algorithms, it outperforms other comparative algorithms in more importantaspects of fitness and stability.

相似文献/References:

[1]王茜,朱志祥,史晨昱,等.应用于数据库安全保护的加解密引擎系统[J].计算机技术与发展,2014,24(01):143.
 WANG Qian[],ZHU Zhi-xiang[],SHI Chen-yu[],et al.Encryption and Decryption Engine System Applying to Database Security and Detection[J].,2014,24(03):143.
[2]陈丹伟 黄秀丽 任勋益.云计算及安全分析[J].计算机技术与发展,2010,(02):99.
 CHEN Dan-wei,HUANG Xiu-li,REN Xun-yi.Analysis of Cloud Computing and Cloud Security[J].,2010,(03):99.
[3]孙放 陈云芳 林杭锋.适用于富客户端的云计算模型[J].计算机技术与发展,2010,(08):96.
 SUN Fang,CHEN Yun-fang,LIN Hang-feng.Cloud Computing Model Applicable to Rich Client Applications[J].,2010,(03):96.
[4]郭苑 张顺颐 孙雁飞.物联网关键技术及有待解决的问题研究[J].计算机技术与发展,2010,(11):180.
 GUO Yuan,ZHANG Shun-yi,SUN Yan-fei.Research of Key Technologies and Unresolved Questions of Internet of Things[J].,2010,(03):180.
[5]李玲娟 张敏.云计算环境下关联规则挖掘算法的研究[J].计算机技术与发展,2011,(02):43.
 LI Ling-juan,ZHANG Min.Research on Algorithms of Mining Association Rule under Cloud Computing Environment[J].,2011,(03):43.
[6]王德政 申山宏 周宁宁.云计算环境下的数据存储[J].计算机技术与发展,2011,(04):81.
 WANG De-zheng,SHEN Shan-hong,ZHOU Ning-ning.Data Storage in Cloud Computing Environment[J].,2011,(03):81.
[7]宋丽华 姜家轩 张建成 田长录 马文征.黄河三角洲云计算平台关键技术的研究[J].计算机技术与发展,2011,(06):40.
 SONG Li-hua,JIANG Jia-xuan,ZHANG Jian-cheng,et al.Research of Key Technologies of Cloud Computing of Yellow River Delta[J].,2011,(03):40.
[8]田宏伟 解福 倪俊敏.云计算环境下基于粒子群算法的资源分配策略[J].计算机技术与发展,2011,(12):22.
 TIAN Hong-wei,XIE Fu,NI Jun-min.Resource Allocation Algorithm Based on Particle Swarm Algorithm in Cloud Computing Environment[J].,2011,(03):22.
[9]张慧 邢培振.云计算环境下信息安全分析[J].计算机技术与发展,2011,(12):164.
 ZHANG Hui,XING Pei-zhen.Information Security Analysis in Cloud Computing Environment[J].,2011,(03):164.
[10]张建成[] 宋丽华[] 鹿全礼[] 郭锐[] 刘永泉[].云计算方案分析研究[J].计算机技术与发展,2012,(01):165.
 ZHANG Jian-cheng,SONG Li-hua,LU Quan-li,et al.Study and Analysis of Cloud Computing Procedure[J].,2012,(03):165.

更新日期/Last Update: 2024-03-10