[1]郭晓敏,朱 琦.面向多任务的频谱感知博弈算法[J].计算机技术与发展,2023,33(06):109-116.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 017]
 GUO Xiao-min,ZHU Qi.Spectrum Sensing Game Algorithm for Multi-task[J].,2023,33(06):109-116.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 017]
点击复制

面向多任务的频谱感知博弈算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年06期
页码:
109-116
栏目:
移动与物联网络
出版日期:
2023-06-10

文章信息/Info

Title:
Spectrum Sensing Game Algorithm for Multi-task
文章编号:
1673-629X(2023)06-0109-08
作者:
郭晓敏朱 琦
南京邮电大学 江苏省无线通信重点实验室,江苏 南京 210003
Author(s):
GUO Xiao-minZHU Qi
Jiangsu Key Laboratory of Wireless Communication,Nanjing University of Posts and Telecommunication,Nanjing 210003,China
关键词:
认知无线电频谱感知群智感知斯坦克尔伯格博弈激励机制
Keywords:
cognitive radiospectrum sensingcrowd sensingStackelberg gameincentive mechanism
分类号:
TP393
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 06. 017
摘要:
随着智能终端设备的增多,频谱资源日益紧缺,认知无线电技术可以通过频谱共享大大提高频谱利用率,频谱感知是认知无线电技术的重要环节。 该文结合频谱感知与群智感知,提出了一种面向多任务的频谱感知博弈算法。 该算法将感知需求次用户向协作感知次用户支付报酬的问题建模为斯坦克尔伯格博弈模型,其中感知需求次用户是博弈模型中的领导层,协作感知次用户是博弈模型中的从属层。 在领导层博弈中,综合考虑检测概率和报酬定义了感知需求次用户的效用,通过博弈优化报酬以获得最佳效用;在从属层博弈中,综合考虑检测概率和感知时间定义了协作感知次用户的效用,根据感知需求次用户发布的报酬优化感知时间以获得最佳效用,并且推导证明了感知时间的优化存在纳什均衡。 仿真结果表明,该算法可以提高协作频谱感知的检测概率。
Abstract:
With the increase of intelligent terminal devices,spectrum resources are increasingly scarce. Cognitive radio technology cangreatly improve spectrum utilization through spectrum sharing. Spectrum sensing is an important part of cognitive radio technology. Aspectrum sensing game algorithm for multi - task is proposed,which combines crowd sensing and spectrum sensing. The problem thatsensing request secondary users pay cooperative sensing secondary users is modeled as a Stackelberg game model. In the game model,sensing request secondary users are the leader,and cooperative sensing secondary users are the follower. In the leader game,the utility ofsensing request secondary users is defined by comprehensively considering the reward and detection probability. The reward is optimizedthrough the game to obtain the optimal utility. In the follower game,the utility of cooperative sensing secondary users is defined by comprehensively considering the detection probability and the sensing time. The sensing time is optimized according to the reward released bysensing request secondary users to get the optimal utility,and it is deduced that the optimization of sensing time exists Nash equilibrium.The simulation shows that the proposed algorithm can improve the detection probability of cooperative spectrum sensing.

相似文献/References:

[1]林琳 周贤伟 薛楠 刘臻臻.认知无线电网络安全路由问题研究[J].计算机技术与发展,2010,(01):155.
 LIN Lin,ZHOU Xian-wei,XUE Nan,et al.Study on Problems of Security Routing in Cognitive Radio Networks[J].,2010,(06):155.
[2]孙丽艳.基于激励机制的认知无线电自私行为研究[J].计算机技术与发展,2009,(10):170.
 SUN Li-yan.Study of Cognitive Radio' Selfish Behavior Based on Two- Stage Incentives Mechanism[J].,2009,(06):170.
[3]任长城 马雏.智能家居中基于认知无线电的通信协议设计[J].计算机技术与发展,2011,(08):14.
 REN Chang-cheng,MA Chu.A Design of Cognitive Radio Communication Protocol in Smart Home[J].,2011,(06):14.
[4]王韦刚 胡海峰.基于压缩感知的协作频谱检测[J].计算机技术与发展,2012,(12):241.
 WANG Wei-gang,HU Hai-feng.Collaborative Spectrum Detection Based on Compressed Sensing[J].,2012,(06):241.
[5]赵之旭,田峰.一种改进的认知无线电功率控制博弈算法[J].计算机技术与发展,2013,(02):101.
 ZHAO Zhi-xu,TIAN Feng.An Improved Power Control Game Algorithm in Cognitive Radios[J].,2013,(06):101.
[6]孔小丽,周井泉.基于用户需求的改进型频谱资源分配算法[J].计算机技术与发展,2013,(03):73.
 KONG Xiao-li,ZHOU Jing-quan.Advanced Spectrum Resource Allocation Algorithm Based on User Requirement[J].,2013,(06):73.
[7]黄德文,周井泉.基于价格的认知网络频谱共享博弈论模型[J].计算机技术与发展,2013,(08):66.
 HUANG De-wen,ZHOU Jing-quan.Cognitive Network Spectrum Sharing Game Theory Model Based on Price[J].,2013,(06):66.
[8]郑志刚,薛菲,周井泉.网络效益最大化的认知无线电频谱分配算法[J].计算机技术与发展,2013,(08):91.
 ZHENG Zhi-gang,XUE Fei,ZHOU Jing-quan.Cognitive Radio Spectrum Assignment Algorithm with Network Benefit Maximization[J].,2013,(06):91.
[9]刘正其,季薇.一种改进的基于BOMP的宽带频谱感知算法[J].计算机技术与发展,2014,24(06):118.
 LIU Zheng-qi,JI Wei.A Modified Spectrum Sensing Algorithm for Wideband Cognitive Radio Based on BOMP[J].,2014,24(06):118.
[10]张凯,齐丽娜. 基于连续隐马尔可夫模型的协作频谱检测[J].计算机技术与发展,2015,25(06):64.
 ZHANG Kai,QI Li-na. Cooperative Spectrum Detection Based on CHMM[J].,2015,25(06):64.
[11]郭云玮 刘全 高俊.不同衰落信道下的协作感知性能研究[J].计算机技术与发展,2011,(05):13.
 GUO Yun-wei,LIU Quan,GAO Jun.Performance of Cooperative Spectrum Sensing over Different Fading Channels[J].,2011,(06):13.
[12]汪晓睿 刘全.认知无线电网络中频谱感知安全的研究进展[J].计算机技术与发展,2011,(12):155.
 WANG Xiao-rui,LIU Quan.A Survey on Spectrum Sensing Security Issues in Cognitive Radio Networks[J].,2011,(06):155.
[13]宗平 刘柳 乔秀泉[].认知无线电技术在ZigBee中的应用研究[J].计算机技术与发展,2012,(08):241.
 ZONG Ping,LIU Liu,QIAO Xiu-quan.Application Research of Cognitive Radio Technology in ZigBee[J].,2012,(06):241.
[14]刘洋,季薇,侯晓赟.一种改进的基于 OMP 重建的宽带频谱感知算法[J].计算机技术与发展,2013,(01):99.
 LIU Yang,JI Wei,HOU Xiao-yun.A Modified Spectrum Sensing Algorithm for Wideband Cognitive Radio Based on OMP[J].,2013,(06):99.
[15]张学军,唐小丽,田峰.基于改进D-S证据理论的频谱感知算法[J].计算机技术与发展,2014,24(06):44.
 ZHANG Xue-jun[][],TANG Xiao-li[],TIAN Feng[].Spectrum Sensing Algorithm Based on Improved D-S Evidence Theory[J].,2014,24(06):44.
[16]李红,齐丽娜. 认知无线电中基于感知时间和K秩准则的优化[J].计算机技术与发展,2015,25(12):186.
 LI Hong,QI Li-na. Joint Optimization Based on Sensing Time and K-rank Criteria in Cognitive Radio[J].,2015,25(06):186.

更新日期/Last Update: 2023-06-10