[1]白雪松,吴建平,景文超,等.基于改进残差网络的农作物病虫害检测研究[J].计算机技术与发展,2023,33(05):145-151.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 022]
 BAI Xue-song,WU Jian-ping,JING Wen-chao,et al.Research on Detection of Crop Disease and Insect Pest Based on Improved Residual Network[J].,2023,33(05):145-151.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 022]
点击复制

基于改进残差网络的农作物病虫害检测研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年05期
页码:
145-151
栏目:
人工智能
出版日期:
2023-05-10

文章信息/Info

Title:
Research on Detection of Crop Disease and Insect Pest Based on Improved Residual Network
文章编号:
1673-629X(2023)05-0145-07
作者:
白雪松1 吴建平123 景文超1 崔亚楠1 康小霖1
1. 云南大学 信息学院,云南 昆明 650504;
2. 云南省电子计算中心,云南 昆明 650223;
3. 云南省高校数字媒体技术重点实验室,云南 昆明 650223
Author(s):
BAI Xue-song1 WU Jian-ping123 JING Wen-chao1 CUI Ya-nan1 KANG Xiao-lin1
1. School of Information Science & Engineering,Yunnan University,Kunming 650504,China;
2. Yunnan Provincial Electronic Computing Center,Kunming 650223,China;
3. Digital Media Technology Key Laboratory of Universities and Colleges in Yunnan Province,Kunming 650223,China
关键词:
农作物病虫害卷积神经网络Res2NeXt50混合卷积标签平滑细粒度特征
Keywords:
crop disease and insect pest convolutional neural network Res2NeXt50 mixed convolution label smoothing fine -grained featur
分类号:
TP312
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 05. 022
摘要:
针对病虫害症状相似导致类间差异小、难以区分的问题,提出一种基于 Res2NeXt50 改进模型的农作物病虫害检测算法。 首先,在 Res2Net50 模型中进行分组卷积得到 Res2NeXt50 模型,提高
了模型在细粒度层面的特征提取能力。 然后,将 7×7 卷积换成新的混合卷积,提取局部和全局特征;使用高斯误差线性单元( Gaussian Error Linear Unit,GELU) 函数代替残差块中的修正线性单元
( Rectified Linear Unit,ReLU) 函数,提高鲁棒性;改进下采样来增强信息流通性;调整网络层数,以减少模型计算量。 其次,在训练中使用标签平滑( Label Smoothing) 和指数移动平均( Exponential Moving Average,EMA)来提高模型的泛化能力。 在重组的 AI Challenger 2018 农作物病虫害数据集上进行实验,结果表明改进模型的准确率高达98. 79% ,参数量为 18. 20M,FLOPs 为 3. 73G。 同时,该模型在 Plantvillage 和 Plant_leaves 数据集中分别达到了 99. 89% 和99. 23% 的准确率。 所提出的算法模型识别准确率高,泛化能力强,更符合实际应用需求。
Abstract:
Aiming at the problem of small differences and indistinguishability between classes due to similar symptoms of disease andinsect pest,a crop disease and insect pest detection algorithm based on the improved Res2NeXt50 model is proposed. Firstly,groupingconvolution is performed in the Res2Net50 model to obtain the Res2NeXt50 model,which improves the feature extraction capability ofthe model at the fine- grained level. Then,the 7×7 convolution is replaced with a new mixed convolution to extract local and globalfeatures. The Gaussian Error Linear Unit ( GELU) is used to replace the Rectified Linear Unit ( ReLU) in the residual block in order toimprove robustness. Downsampling is improved to enhance information flow,and the number of network layers is adjusted to reduce theamount of model computation. Secondly, Label Smoothing and Exponential Moving Average are used in training to improve thegeneralization ability of the model. Experiments were carried out on the restructured AI Challenger 2018 crop disease and insect pestdataset,which showed that the accuracy of the improved model was as high as 98. 79% ,the number of parameters was 18. 20M,and theFLOPs was 3. 73G. Meanwhile, the model achieves 99. 89% and 99. 23% accuracy in Plantvillage and Plant _ leaves datasets, respectively. The proposed algorithm model has high recognition accuracy and strong generalization ability,which is more in line withpractical application requirements.

相似文献/References:

[1]崔凤焦.表情识别算法研究进展与性能比较[J].计算机技术与发展,2018,28(02):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
 CUI Feng-jiao.Research and Performance Comparison of Facial Expression Recognition Algorithm[J].,2018,28(05):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
[2]张丹丹,李雷. 基于PCANet-RF的人脸检测系统[J].计算机技术与发展,2016,26(02):31.
 ZHANG Dan-dan,LI Lei. Face Detection System Based on PCANet-RF[J].,2016,26(05):31.
[3]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].,2018,28(05):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[4]郭子琰,舒心,刘常燕,等.基于ReLU 函数的卷积神经网络的花卉识别算法[J].计算机技术与发展,2018,28(05):154.[doi:10.3969/j.issn.1673-629X.2018.05.035]
 GUO Ziyan,SHU Xin,LIU Changyan,et al.A Recognition Algorithm of Flower Based on Convolution Neural Network with ReLU Function[J].,2018,28(05):154.[doi:10.3969/j.issn.1673-629X.2018.05.035]
[5]缪宇杰,吴智钧,宫 婧.基于3D 卷积的视频错帧筛选方法[J].计算机技术与发展,2018,28(05):179.[doi:10.3969/ j. issn.1673-629X.2018.05.040]
 MIAO Yu-jie,WU Zhi-jun,GONG Jing.A Wrong Temporal-order Frames Identification Method Based on 3D Convolution[J].,2018,28(05):179.[doi:10.3969/ j. issn.1673-629X.2018.05.040]
[6]吴玉枝,吴志红,熊运余.基于卷积神经网络的小样本车辆检测与识别[J].计算机技术与发展,2018,28(06):1.[doi:10.3969/ j. issn.1673-629X.2018.06.001]
 WU Yu-zhi,WU Zhi-hong,XIONG Yun-yu.Vehicle Detection and Recognition of a Few Samples Based on Convolutional Neural Network[J].,2018,28(05):1.[doi:10.3969/ j. issn.1673-629X.2018.06.001]
[7]李相桥,李晨,田丽华,等.卷积神经网络并行训练的优化研究[J].计算机技术与发展,2018,28(08):12.[doi:10.3969/ j. issn.1673-629X.2018.08.003]
 LI Xiang-qiao,LI Chen,TIAN Li-hua,et al.Research on Optimization of Parallel Training for Convolution Neural Network[J].,2018,28(05):12.[doi:10.3969/ j. issn.1673-629X.2018.08.003]
[8]邓宗平,赵启军,陈虎. 基于深度学习的人脸姿态分类方法[J].计算机技术与发展,2016,26(07):11.
 DEND Zong-ping,ZHAO Qi-jun,CHEN Hu. Face Pose Classification Method Based on Deep Learning[J].,2016,26(05):11.
[9]河海大学 计算机与信息学院,江苏 南京 0098.卷积网络的无监督特征提取对人脸识别的研究[J].计算机技术与发展,2018,28(06):17.[doi:10.3969/ j. issn.1673-629X.2018.06.004]
 DU Bai-sheng.Research on Unsupervised Feature Extraction Based on Convolutional Neural Network for Face Recognition[J].,2018,28(05):17.[doi:10.3969/ j. issn.1673-629X.2018.06.004]
[10]高翔,陈志,岳文静,等.基于视频场景深度学习的人物语义识别模型[J].计算机技术与发展,2018,28(06):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
 GAO Xiang,CHEN Zhi,YUE Wen-jing,et al.Human Semantic Recognition Model Based on Video Scene Deep Learning[J].,2018,28(05):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
[11]白雪松,吴建平,景文超,等.基于卷积神经网络的农作物病虫害检测研究[J].计算机技术与发展,2022,32(12):200.[doi:10. 3969 / j. issn. 1673-629X. 2022. 12. 030]
 BAI Xue-song,WU Jian-ping,JING Wen-chao,et al.Research on Crop Diseases and Pests Detection Based on Convolutional Neural Network[J].,2022,32(05):200.[doi:10. 3969 / j. issn. 1673-629X. 2022. 12. 030]

更新日期/Last Update: 2023-05-10