[1]仇亚进,奚雪峰 *,崔志明,等.多跳式机器阅读理解研究进展综述[J].计算机技术与发展,2023,33(02):9-16.[doi:10. 3969 / j. issn. 1673-629X. 2023. 02. 002]
 QIU Ya-jin,XI Xue-feng *,CUI Zhi-ming,et al.Review on Research Progress of Multi-hop Machine Reading Comprehension[J].,2023,33(02):9-16.[doi:10. 3969 / j. issn. 1673-629X. 2023. 02. 002]
点击复制

多跳式机器阅读理解研究进展综述()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
33
期数:
2023年02期
页码:
9-16
栏目:
综述
出版日期:
2023-02-10

文章信息/Info

Title:
Review on Research Progress of Multi-hop Machine Reading Comprehension
文章编号:
1673-629X(2023)02-0009-08
作者:
仇亚进12 奚雪峰1 23 * 崔志明12 盛胜利4 周悦尧12
1. 苏州科技大学 电子与信息工程学院,江苏 苏州 215000;
2. 苏州市虚拟现实智能交互及应用重点实验室,江苏 苏州 215000;
3. 苏州智慧城市研究院,江苏 苏州 215000;
4. 德州理工大学,德克萨斯州 卢伯克市 79401
Author(s):
QIU Ya-jin12 XI Xue-feng123 * CUI Zhi-ming12 SHENG Sheng-li4 ZHOU Yue-yao12
1. School of Electronic and Information Engineering,Suzhou University of Science and Technology,Suzhou 215000,China;
2. Suzhou Key Laboratory of Virtual Reality Intelligent Interaction and Application Technology,Suzhou 215000,China;
3. Suzhou Smart City Research Institute,Suzhou 215000,China;
4. Texas Institute of Technology,Lubbock 79401,USA
关键词:
多跳式机器阅读理解注意力机制图神经网络问题分解数据集
Keywords:
muti-hop machine reading comprehensionattention mechanismgraph neural networkquestion decompositiondataset
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2023. 02. 002
摘要:
机器阅读理解的目标是使机器更好地理解自然语言文本并在此基础上回答提出的问题,是自然语言处理领域热门的研究方向之一。 早期,由于受到了数据集的约束,对机器阅读理解的认识大多仅限于一个单跳式的问答。 随着最近几年多跳机器阅读理解数据集的发展,多跳式机器阅读理解得到广泛的研究,极大地推动了机器阅读理解领域的发展。从以下几个方面对基于多跳式的机器阅读理解进行归纳总结:介绍了机器阅读理解任务定义与发展历程;阐述了多跳式机器阅读理解任务定义并梳理总结相关数据集;详细整理了多跳式机器阅读理解基于注意力机制和图神经网络以及问题分解相关模型方法的研究进展;最后,对多跳式机器阅读理解未来研究重点和所面临的研究挑战进行展望。
Abstract:
The goal of machine reading comprehension is to enable machines to better understand natural language texts and answerquestions on this basis,which is one? ? ? of the hot research directions in the field of natural language processing. In the early days,due to theconstraints of data sets,the understanding of machine reading comprehension was mostly limited to a single-hop question and answer.With the development of multi-hop machine reading comprehension data sets in recent years,multi-hop machine reading comprehensionhas been widely studied,which has greatly promoted the development of the field of machine reading comprehension. We summarize themulti-hop machine reading comprehension from the following aspects:Introduce the definition and development of machine reading comprehension task,expound the definition of multi-hop machine reading comprehension task,and sort out the related data sets. The researchprogress of multi-hop machine reading comprehension based on attention mechanism,graph neural network and problem decompositionrelated models is sorted out in detail. Finally,the future research emphases and challenges of multi-hop machine reading comprehensionare prospected.

相似文献/References:

[1]李梦洁,董峦.基于 PyTorch 的机器翻译算法的实现[J].计算机技术与发展,2018,28(10):160.[doi:10.3969/ j. issn.1673-629X.2018.10.033]
 LI Meng-jie,DONG Luan.Implementation of Machine Translation Algorithm Based on PyTorch[J].,2018,28(02):160.[doi:10.3969/ j. issn.1673-629X.2018.10.033]
[2]李东欣,禹 龙,田生伟,等.注意力机制的 LSTM-DBN 维语人称代词指代消解[J].计算机技术与发展,2019,29(07):33.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 007]
 LI Dong-xin,YU Long,TIAN Sheng-wei,et al.Attention Mechanism of LSTM-DBN Uyghur Personal Pronoun Anaphora Resolution[J].,2019,29(02):33.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 007]
[3]尹 鹏,周 林,郭 强,等.基于短语级注意力机制的关系抽取方法[J].计算机技术与发展,2019,29(09):24.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 005]
 YIN Peng,ZHOU Lin,GUO Qiang,et al.Relation Extraction Based on Phrase-level Attention[J].,2019,29(02):24.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 005]
[4]钟 诚,周浩杰,韦海亮.一种基于注意力机制的三维点云物体识别方法[J].计算机技术与发展,2020,30(04):41.[doi:10. 3969 / j. issn. 1673-629X. 2020. 04. 008]
 ZHONG Cheng,ZHOU Hao-jie,WEI Hai-liang.A 3D Point Cloud Object Recognition Method Based on Attention Mechanism[J].,2020,30(02):41.[doi:10. 3969 / j. issn. 1673-629X. 2020. 04. 008]
[5]王乾铭,李 吟.基于深度学习的个性化聊天机器人研究[J].计算机技术与发展,2020,30(04):79.[doi:10. 3969 / j. issn. 1673-629X. 2020. 04. 015]
 WANG Qian-ming,LI Yin.Research on Personalized Chatbot Based on Deep Learning[J].,2020,30(02):79.[doi:10. 3969 / j. issn. 1673-629X. 2020. 04. 015]
[6]朱立倩.基于深度学习的数显仪表字符识别[J].计算机技术与发展,2020,30(06):141.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 027]
 ZHU Li-qian.Character Recognition of Digital Display Instrument Based on Deep Learning[J].,2020,30(02):141.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 027]
[7]申静波,李井辉,孙丽娜.注意力机制在评论文本情感分析中的应用研究[J].计算机技术与发展,2020,30(07):169.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 036]
 SHEN Jing-bo,LI Jing-hui,SUN Li-na.Research on Application of Attention Mechanism in Comment Text Emotional Analysis[J].,2020,30(02):169.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 036]
[8]张亚飞.基于注意力的权重分配机制[J].计算机技术与发展,2020,30(09):49.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 009]
 ZHANG Ya-fei.Attention-based Weight Allocation Mechanism[J].,2020,30(02):49.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 009]
[9]王振业,叶成绪*,王文韬,等.基于 LSTM-Att 方法的音乐流行趋势预测[J].计算机技术与发展,2020,30(09):188.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 034]
 WANG Zhen-ye,YE Cheng-xu*,WANG Wen-tao,et al.Music Trend Forecast Based on LSTM-Att Method[J].,2020,30(02):188.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 034]
[10]陈 琛,刘小云,方玉华.融合注意力机制的电子病历命名实体识别[J].计算机技术与发展,2020,30(10):216.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 038]
 CHEN Chen,LIU Xiao-yun,FANG Yu-hua.Named Entity Recognition in Electronic Medical Record Introducing Attention Mechanisms[J].,2020,30(02):216.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 038]

更新日期/Last Update: 2023-02-10