[1]白雪松,吴建平,景文超,等.基于卷积神经网络的农作物病虫害检测研究[J].计算机技术与发展,2022,32(12):200-205.[doi:10. 3969 / j. issn. 1673-629X. 2022. 12. 030]
 BAI Xue-song,WU Jian-ping,JING Wen-chao,et al.Research on Crop Diseases and Pests Detection Based on Convolutional Neural Network[J].,2022,32(12):200-205.[doi:10. 3969 / j. issn. 1673-629X. 2022. 12. 030]
点击复制

基于卷积神经网络的农作物病虫害检测研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年12期
页码:
200-205
栏目:
新型计算应用系统
出版日期:
2022-12-10

文章信息/Info

Title:
Research on Crop Diseases and Pests Detection Based on Convolutional Neural Network
文章编号:
1673-629X(2022)12-0200-06
作者:
白雪松1 吴建平123 景文超1 何旭鑫1 余 咏1
1. 云南大学 信息学院,云南 昆明 650504;
2. 云南省电子计算中心,云南 昆明 650223;
3. 云南省高校数字媒体技术重点实验室,云南 昆明 650223
Author(s):
BAI Xue-song1 WU Jian-ping123 JING Wen-chao1 HE Xu-xin1 YU Yong1
1. School of Information Science & Engineering,Yunnan University,Kunming 650504,China;
2. Yunnan Provincial Electronic Computing Center,Kunming 650223,China;
3. Key Laboratory of Digital Media Technology of Universities and Colleges in Yunnan Province,Kunming 650223,China
关键词:
农作物病虫害卷积神经网络CBAM-Res2Net50迁移学习注意力模块隐式语义数据增强
Keywords:
crop diseases and pests convolutional neural network CBAM - Res2Net50 transfer learning attention module implicitsemantic data augmentation
分类号:
TP312
DOI:
10. 3969 / j. issn. 1673-629X. 2022. 12. 030
摘要:
农作物病虫害图像采集困难,且公共数据集较少,因此使用单一网络模型识别准确率不高。 常用的数据增强方法只能对图像进行像素空间的变换, 不能进行语义转换。对此, 研 究 并 提 出 基 于 隐 式 语 义 数 据 增 强 算 法 的 CBAM -Res2Net50 模型:该模型使用 Res2Net50 主干网络,从多尺度学习图像信息,加载预训练模型部分参数,提高模型的收敛速度;在网络残差块中添加混合注意力模块,提取并保留关键特征;训练过程中使用隐式语义数据增强算法对提取的深层网络空间特征进行语义扩充增强,提高模型的泛化能力改进模型与现有模型在 AI Challenger 2018 农作物病虫害数据集上的对比实验结果表明:改进模型具有较高的识别率,其分类准确率达 88. 33% 。 改进后的模型通过挖掘相似病虫害图像的语义信息,在一定程度上解决了深度网络中由于数据不足导致的过拟合等问题。
Abstract:
It is difficult to collect images of crop diseases and pests,and there are few common data sets,so the recognition accuracy ofsingle network model is not high. The commonly used data augmentation methods can only transform image pixel space,but not semantictransformation. Therefore,CBAM-Res2Net50 model based on implicit semantic data augmentation algorithm is studied and proposed.The model uses Res2Net50 backbone network to learn image information from multi - scale and load some parameters of pre - trainingmodel to improve the convergence speed of the model. A mixed attention module is added to the network residual block to extract andretain key features. In the training process,implicit semantic data augmentation algorithm is used to enhance semantic expansion and generalization ability of the model. The experimental results of comparison between the improved model and the existing model on AIChallenger 2018 Crop Diseases and Pests Data Set show that the improved model has a high recognition rate, and its classificationaccuracy is 88. 33% . The improved model can solve the problem of over-fitting caused by insufficient data in deep network to someextent by mining semantic information of similar images of diseases and pests.

相似文献/References:

[1]崔凤焦.表情识别算法研究进展与性能比较[J].计算机技术与发展,2018,28(02):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
 CUI Feng-jiao.Research and Performance Comparison of Facial Expression Recognition Algorithm[J].,2018,28(12):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
[2]张丹丹,李雷. 基于PCANet-RF的人脸检测系统[J].计算机技术与发展,2016,26(02):31.
 ZHANG Dan-dan,LI Lei. Face Detection System Based on PCANet-RF[J].,2016,26(12):31.
[3]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].,2018,28(12):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[4]郭子琰,舒心,刘常燕,等.基于ReLU 函数的卷积神经网络的花卉识别算法[J].计算机技术与发展,2018,28(05):154.[doi:10.3969/j.issn.1673-629X.2018.05.035]
 GUO Ziyan,SHU Xin,LIU Changyan,et al.A Recognition Algorithm of Flower Based on Convolution Neural Network with ReLU Function[J].,2018,28(12):154.[doi:10.3969/j.issn.1673-629X.2018.05.035]
[5]缪宇杰,吴智钧,宫 婧.基于3D 卷积的视频错帧筛选方法[J].计算机技术与发展,2018,28(05):179.[doi:10.3969/ j. issn.1673-629X.2018.05.040]
 MIAO Yu-jie,WU Zhi-jun,GONG Jing.A Wrong Temporal-order Frames Identification Method Based on 3D Convolution[J].,2018,28(12):179.[doi:10.3969/ j. issn.1673-629X.2018.05.040]
[6]吴玉枝,吴志红,熊运余.基于卷积神经网络的小样本车辆检测与识别[J].计算机技术与发展,2018,28(06):1.[doi:10.3969/ j. issn.1673-629X.2018.06.001]
 WU Yu-zhi,WU Zhi-hong,XIONG Yun-yu.Vehicle Detection and Recognition of a Few Samples Based on Convolutional Neural Network[J].,2018,28(12):1.[doi:10.3969/ j. issn.1673-629X.2018.06.001]
[7]李相桥,李晨,田丽华,等.卷积神经网络并行训练的优化研究[J].计算机技术与发展,2018,28(08):12.[doi:10.3969/ j. issn.1673-629X.2018.08.003]
 LI Xiang-qiao,LI Chen,TIAN Li-hua,et al.Research on Optimization of Parallel Training for Convolution Neural Network[J].,2018,28(12):12.[doi:10.3969/ j. issn.1673-629X.2018.08.003]
[8]邓宗平,赵启军,陈虎. 基于深度学习的人脸姿态分类方法[J].计算机技术与发展,2016,26(07):11.
 DEND Zong-ping,ZHAO Qi-jun,CHEN Hu. Face Pose Classification Method Based on Deep Learning[J].,2016,26(12):11.
[9]河海大学 计算机与信息学院,江苏 南京 0098.卷积网络的无监督特征提取对人脸识别的研究[J].计算机技术与发展,2018,28(06):17.[doi:10.3969/ j. issn.1673-629X.2018.06.004]
 DU Bai-sheng.Research on Unsupervised Feature Extraction Based on Convolutional Neural Network for Face Recognition[J].,2018,28(12):17.[doi:10.3969/ j. issn.1673-629X.2018.06.004]
[10]高翔,陈志,岳文静,等.基于视频场景深度学习的人物语义识别模型[J].计算机技术与发展,2018,28(06):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
 GAO Xiang,CHEN Zhi,YUE Wen-jing,et al.Human Semantic Recognition Model Based on Video Scene Deep Learning[J].,2018,28(12):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
[11]白雪松,吴建平,景文超,等.基于改进残差网络的农作物病虫害检测研究[J].计算机技术与发展,2023,33(05):145.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 022]
 BAI Xue-song,WU Jian-ping,JING Wen-chao,et al.Research on Detection of Crop Disease and Insect Pest Based on Improved Residual Network[J].,2023,33(12):145.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 022]

更新日期/Last Update: 2022-12-10