[1]曹茂俊,尤文菁,卢玉莹.基于自寻优和交叉寻优的量子优化算法[J].计算机技术与发展,2022,32(07):8-14.[doi:10. 3969 / j. issn. 1673-629X. 2022. 07. 002]
 CAO Mao-jun,YOU Wen-jing,LU Yu-ying.uantum Optimization Algorithm Based on Self-optimization and Cross-optimization[J].,2022,32(07):8-14.[doi:10. 3969 / j. issn. 1673-629X. 2022. 07. 002]
点击复制

基于自寻优和交叉寻优的量子优化算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年07期
页码:
8-14
栏目:
人工智能
出版日期:
2022-07-10

文章信息/Info

Title:
uantum Optimization Algorithm Based on Self-optimization and Cross-optimization
文章编号:
1673-629X(2022)07-0008-07
作者:
曹茂俊尤文菁卢玉莹
东北石油大学 计算机与信息技术学院,黑龙江 大庆 163318
Author(s):
CAO Mao-junYOU Wen-jingLU Yu-ying
School of Computer and Information Technology,Northeast Petroleum University,Daqing 163318,China
关键词:
优化算法自寻优交叉寻优量子衍生算法Bloch 球面坐标
Keywords:
optimization algorithmself-optimizationcross-optimizationquantum inspired algorithmBloch coordinates
分类号:
TP301
DOI:
10. 3969 / j. issn. 1673-629X. 2022. 07. 002
摘要:
为提高群智能优化算法的搜索能力,提出了一种量子优化算法。? 该算法基于量子位 Bloch 坐标,将种群分为最优个体和普通个体两部分并进行不同处理,对于最优个体,通过使所有量子比特在 Bloch 球面上绕着坐标轴多次旋转,生成多个新个体,并采用贪婪搜索策略选择最优个体;对于普通个体,将当前个体的量子比特向着随机交叉确定的目标位置旋转,生成新个体,并在当前个体和新个体之间通过贪婪选择以实现当前个体的交叉寻优。 函数极值优化的仿真结果表明,所提算法在优化能力上, 优于简单量子遗传算法、普通遗传算法和人工鱼群算法,从而验证了算法的有效性。 该算法在高维能很好地避免陷入局部最优值,具有快速收敛性和良好的全局搜索能力,实验结果揭示出采用量子计算设计优化算法进而提升搜索能力的研究思路是可行的。
Abstract:
To improve the search capability of the group intelligence optimization algorithm, a quantum optimization algorithm? ? ? ? ? ?is proposed. Based on Bloch coordinates, the algorithm divides the population into optimal individuals and ordinary individuals and performs different processing. For the optimal individual,by rotating all qubits around the coordinate axis,multiple new individuals are generated and using the greedy search strategy,the optimal individual is selected. For current individuals in the population,the cross-optimization of the current individual by determining random crossings? ? with other individuals and rotating the qubits towards the target position generates a new individual with greedy selection between the current individual and the new individual. Simulation results of functional extremal optimization show that the proposed algorithm outperforms the simple quantum genetic algorithm,the common genetic algorithm and the artificial fish swarms algorithm in terms of optimization ability,thus verifying the effectiveness of such algorithm. The algorithm avoids falling into local optimum in high dimensions, with fast convergence and strong global search capability. The experimental results reveal that the optimization algorithm is feasible.

相似文献/References:

[1]张创业 莫愿斌 何登旭.二群协同的人工鱼群优化算法[J].计算机技术与发展,2009,(11):38.
 ZHANG Chuang-ye,MO Yuan-bin,HE Deng-xu.Two Swarms Cooperative Artificial Fish- Swarm Optimization Algorithm[J].,2009,(07):38.
[2]谢骊玲,宋彦斌,杨坦,等. 求解车辆路径问题的改进MMAS算法[J].计算机技术与发展,2016,26(03):27.
 XIE Li-ling,SONG Yan-bin,YANG Tan,et al. An Improved MMAS for Vehicle Routing Problem[J].,2016,26(07):27.
[3]王钛[],许斌[],李林国[],等. 基于离散灰狼算法的多级阈值图像分割[J].计算机技术与发展,2016,26(07):30.
 WANG Tai[],XU Bin[],LI Lin-guo[],et al. A Multi-threshold Image Segmentation Algorithm Based on Discrete Grey Wolf Optimization[J].,2016,26(07):30.
[4]俞文静,张明军,王影.面向视频超分辨率重建的混合粒子群优化算法[J].计算机技术与发展,2018,28(11):75.[doi:10.3969/ j. issn.1673-629X.2018.11.017]
 YU Wen-jing,ZHANG Ming-jun,WANG Ying.A Hybrid Particle Swarm Optimization Algorithm for Image/ Video Super-resolution Reconstructio[J].,2018,28(07):75.[doi:10.3969/ j. issn.1673-629X.2018.11.017]
[5]李登峰,杨 曦.基于改进智能水滴算法的移动机器人路径规划[J].计算机技术与发展,2019,29(12):49.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 009]
 LI Deng-feng,YANG Xi.Path Planning of Mobile Robot Based on Improved Intelligent Water Drop Algorithm[J].,2019,29(07):49.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 009]
[6]叶 飞,吴奇石.基于数据智能的人车模型构建与资源分析系统[J].计算机技术与发展,2019,29(12):122.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 022]
 YE Fei,WU Qi-shi.Pedestrian-vehicle Model Construction and Resource Analysis System Based on Data Intelligence[J].,2019,29(07):122.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 022]
[7]齐元豪,王 凯,付亚平.基于头脑风暴算法的电动货车路径优化问题[J].计算机技术与发展,2020,30(04):74.[doi:10. 3969 / j. issn. 1673-629X. 2020. 04. 014]
 QI Yuan-hao,WANG Kai,FU Ya-ping.Path Optimization Problem of Electric Freight Car Based on Brainstorming Algorithm[J].,2020,30(07):74.[doi:10. 3969 / j. issn. 1673-629X. 2020. 04. 014]
[8]俞文静,刘 航,李梓瑞,等.基于改进萤火虫优化算法的视频监控图像增强[J].计算机技术与发展,2020,30(04):195.[doi:10. 3969 / j. issn. 1673-629X. 2020. 04. 037]
 YU Wen-jing,LIU Hang,LI Zi-rui,et al.Surveillance Video Images Enhancement Based on Improved Glowworm Swarm Optimization Algorithm[J].,2020,30(07):195.[doi:10. 3969 / j. issn. 1673-629X. 2020. 04. 037]
[9]岳文静,孙 鹏,陈 志.基于改进海鸥算法的认知无人机网络频谱分配[J].计算机技术与发展,2021,31(09):7.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 002]
 YUE Wen-jing,SUN Peng,CHEN Zhi.Spectrum Allocation of Cognitive UAV Network Based on Improved Seagull Algorithm[J].,2021,31(07):7.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 002]

更新日期/Last Update: 2022-07-10