[1]殷佳莉,江智威,杨 毅,等.融合时间衰减函数的改进协同过滤算法[J].计算机技术与发展,2022,32(04):170-175.[doi:10. 3969 / j. issn. 1673-629X. 2022. 04. 029]
 YIN Jia-li,JIANG Zhi-wei,YANG Yi,et al.An Improved Collaborative Filtering Algorithm Incorporating Time Decay Function[J].,2022,32(04):170-175.[doi:10. 3969 / j. issn. 1673-629X. 2022. 04. 029]
点击复制

融合时间衰减函数的改进协同过滤算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年04期
页码:
170-175
栏目:
应用前沿与综合
出版日期:
2022-04-10

文章信息/Info

Title:
An Improved Collaborative Filtering Algorithm Incorporating Time Decay Function
文章编号:
1673-629X(2022)04-0170-06
作者:
殷佳莉江智威杨 毅刘培培
成都理工大学 信息科学与技术学院(网络安全学院、牛津布鲁克斯学院),四川 成都 610059
Author(s):
YIN Jia-liJIANG Zhi-weiYANG YiLIU Pei-pei
School of Information Science and Technology ( School of Cyber Security,Oxford Brookes College) ,Chengdu University of Technology,Chengdu 610059,China
关键词:
推荐算法协同过滤人类记忆遗忘特性时间衰减函数兴趣偏好
Keywords:
recommendation algorithmcollaborative filteringlaw of forgetting human memorytime decay functioninterest preference
分类号:
TP301
DOI:
10. 3969 / j. issn. 1673-629X. 2022. 04. 029
摘要:
大数据时代数据量呈爆发式增长,为帮助人们在海量数据中获取自己所感兴趣的信息,推荐系统应运而生。协同过滤在推荐系统中应用广泛,针对传统协同过滤推荐算法数据稀疏、推荐精度较低,不能及时反映用户的兴趣度变化以及时效性不足等缺点, 提出了一种融合时间衰减函数的改进协同过滤推荐算法。 此算法在传统协同过滤算法的基础上综合考虑了时间因素的影响,用户兴趣会随着时间而变化,用户在短时间内感兴趣的物品具有更高的相似性,参考人类记忆遗忘特性,拟合人类记忆遗忘曲线得到时间衰减函数作为权重因子,在计算相似度和用户偏好程度时同时融入时间衰减函数对算法进行约束,提高短时间内物品相似度和用户兴趣度的权重,实现短期和长期兴趣度融合。 实验结果表明,改进后的方法能在一定程度上提高传统推荐算法的精确率和召回率,验证了时间衰减函数的有效性。
Abstract:
In the era of big data,the amount of data grows explosively. To help people get the information they are interested in from the mass data,the recommendation system emerges at the historic moment. Collaborative filtering is widely used in recommendation systems.Aiming at the shortcomings of traditional collaborative filtering recommendation algorithms,such as sparse data,low precision,inability to timely reflect the changes of users’ interest and lack of timeliness, we propose an improved collaborative filtering recommendation algorithm based on fusion of time decay function. Based on the traditional collaborative filtering algorithm,the proposed algorithm comprehensively takes the influence of time factor into account. Users’ interest will change with time,and the items that users are interested in a short period of time have higher similarity.? ? By referring to the law of human memory forgetting and fitting the curve of human memory forgetting,the time decay function is obtained as the weight factor. In the calculation of similarity and user preference, the algorithm is constrained by the time decay function,so as to improve the weight of similarity and user interest in a short period of time,and realize the combination of short-term and long-term interest. Experiment shows that the improved method can improve the precision and recall rate of the traditional recommendation algorithm to a certain extent,which verifies the validity of the time decay function.

相似文献/References:

[1]邵延振 蒙韧 袁鼎荣 李新友.基于Web结构分区的协同过滤推荐算法研究[J].计算机技术与发展,2010,(06):67.
 SHAO Yan-zhen,MENG Ren,YUAN Ding-rong,et al.Collaborative Filtering Recommendation Algorithm Research Based on Web Blocks[J].,2010,(04):67.
[2]查文琴 梁昌勇 曹镭.基于用户聚类的协同过滤推荐方法[J].计算机技术与发展,2009,(06):69.
 ZHA Wen-qin,LIANG Chang-yong,CAO Lei.Collaborative Filtering Recommendation Method Based on Clustering of Users[J].,2009,(04):69.
[3]姜雅倩 王直杰 张珏.基于供求关系及协同过滤技术的推荐模型研究[J].计算机技术与发展,2007,(06):18.
 JIANG Ya-qian,WANG Zhi-jie,ZHANG Jue.Research on Recommendation Model Based on Supply and Demand Relation and Collaborative Filtering[J].,2007,(04):18.
[4]游文 叶水生.电子商务推荐系统中的协同过滤推荐[J].计算机技术与发展,2006,(09):70.
 YOU Wen,YE Shui-sheng.A Survey of Collaborative Filtering Algorithm Applied in E- commerce Recommender System[J].,2006,(04):70.
[5]徐红 彭黎 郭艾寅 徐云剑.基于用户多兴趣的协同过滤策略改进研究[J].计算机技术与发展,2011,(04):73.
 XU Hong,PENG Li,GUO Ai-yin,et al.User-Based Collaborative Filtering Strategies More Interested in Improvement of Research[J].,2011,(04):73.
[6]杨东风 牛永洁.基于混合规则的图书推荐模型设计与研究[J].计算机技术与发展,2011,(07):210.
 YANG Dong-feng,NIU Yong-jie.Books Recommended Model Design and Research Based on Mixing Rules[J].,2011,(04):210.
[7]吴月萍 王娜 马良.基于蚁群算法的协同过滤推荐系统的研究[J].计算机技术与发展,2011,(10):73.
 WU Yue-ping,WANG Na,MA Liang.Research of Collaboration Filtering Recommendation System Based on Ant Algorithm[J].,2011,(04):73.
[8]范虎,花伟伟.协同过滤推荐算法的研究与改进[J].计算机技术与发展,2013,(09):66.
 FAN Hu[],HUA Wei-wei[].Research and Improvement of Collaborative Filtering Recommendation Algorithm[J].,2013,(04):66.
[9]李振博,徐桂琼,査九. 基于用户谱聚类的协同过滤推荐算法[J].计算机技术与发展,2014,24(09):59.
 LI Zhen-bo,XU Gui-qiong,ZHA Jiu. A Collaborative Filtering Recommendation Algorithm Based on User Spectral Clustering[J].,2014,24(04):59.
[10]李荟,谢强,丁秋林. 一种基于情景的协同过滤推荐算法[J].计算机技术与发展,2014,24(10):42.
 LI Hui,XIEQiang,DING Qiu-lin. A Collaborative Filtering Recommendation Algorithm Based on Scenario[J].,2014,24(04):42.
[11]李克潮,蓝冬梅.一种属性和评分的协同过滤混合推荐算法[J].计算机技术与发展,2013,(07):116.
 LI Ke-chao,LAN Dong-mei.A Collaborative Filtering Hybrid Recommendation Algorithm for Attribute and Rating[J].,2013,(04):116.
[12]王全民,王莉,曹建奇. 基于评论挖掘的改进的协同过滤推荐算法[J].计算机技术与发展,2015,25(10):24.
 WANG Quan-min,WANG Li,CAO Jian-qi. Improved Collaborative Filtering Recommendation Algorithm Based on Comments Mining[J].,2015,25(04):24.
[13]李远博,曹菡. 基于PCA降维的协同过滤推荐算法[J].计算机技术与发展,2016,26(02):26.
 LI Yuan-bo,CAO Han. Collaborative Filtering Recommendation Algorithm Based on PCA Dimension Reduction[J].,2016,26(04):26.
[14]房旋[],陈升波[],宫婧[][],等. 基于社交影响力的推荐算法[J].计算机技术与发展,2016,26(06):31.
 FANG Xuan[],CHEN Sheng-bo[],GONG Jing[][],et al. A Recommendation Algorithm Based on Social Influence[J].,2016,26(04):31.
[15]蒋宗礼,王威,陆晨. 基于均值预估的协同过滤推荐算法改进[J].计算机技术与发展,2017,27(05):1.
 JIANG Zong-li,WANG Wei,LU Chen. 基于均值预估的协同过滤推荐算法改进[J].,2017,27(04):1.
[16]刘 旭,李玲娟.基于项目聚类和时间衰减的动态协同过滤算法[J].计算机技术与发展,2020,30(08):22.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 004]
 LIU Xu,LI Ling-juan.Dynamic Collaborative Filtering Algorithm Based on Item Clustering and Time Decay[J].,2020,30(04):22.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 004]
[17]赵学健,张雨豪,陈 昊,等.基于 FCM 用户聚类的协同过滤推荐算法[J].计算机技术与发展,2021,31(08):6.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 002]
 ZHAO Xue-jian,ZHANG Yu-hao,CHEN Hao,et al.Collaborative Filtering Recommendation Algorithm Based on Fuzzy C-Means User Clustering[J].,2021,31(04):6.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 002]
[18]李 浩,梁京章,潘 莹 *.一种改进的兴趣相似度个性化推荐算法[J].计算机技术与发展,2022,32(12):1.[doi:10. 3969 / j. issn. 1673-629X. 2022. 12. 001]
 LI Hao,LIANG Jing-zhang,PAN Ying *.An Improved Personalized Recommendation Algorithm Based on Interest Similarity[J].,2022,32(04):1.[doi:10. 3969 / j. issn. 1673-629X. 2022. 12. 001]
[19]黄巧文,周宽久,费 铮,等.基于模糊聚类的多视图协同过滤推荐算法[J].计算机技术与发展,2023,33(08):14.[doi:10. 3969 / j. issn. 1673-629X. 2023. 08. 003]
 HUANG Qiao-wen,ZHOU Kuan-jiu,FEI Zheng,et al.Fuzzy Clustering Based Multi-view Collaborative Filtering Recommendation Algorithm[J].,2023,33(04):14.[doi:10. 3969 / j. issn. 1673-629X. 2023. 08. 003]

更新日期/Last Update: 2022-04-10