[1]钟云峰,宋伟宁.基于云边协同多任务计算卸载策略[J].计算机技术与发展,2022,32(04):69-73.[doi:10. 3969 / j. issn. 1673-629X. 2022. 04. 012]
 ZHONG Yun-feng,SONG Wei-ning.Multi-task Computation Offloading Strategy Based on Cloud-side Collaboration[J].,2022,32(04):69-73.[doi:10. 3969 / j. issn. 1673-629X. 2022. 04. 012]
点击复制

基于云边协同多任务计算卸载策略()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年04期
页码:
69-73
栏目:
系统工程
出版日期:
2022-04-10

文章信息/Info

Title:
Multi-task Computation Offloading Strategy Based on Cloud-side Collaboration
文章编号:
1673-629X(2022)04-0069-05
作者:
钟云峰宋伟宁
东华理工大学 信息工程学院,江西 南昌 330013
Author(s):
ZHONG Yun-fengSONG Wei-ning
School of Information Engineering,East China University of Technology,Nanchang 330013,China
关键词:
边缘计算计算卸载工业互联网卸载时延卸载决策
Keywords:
edge computingcomputation offloadingindustrial Internetunloading delayoffloading decision-making
分类号:
TP301
DOI:
10. 3969 / j. issn. 1673-629X. 2022. 04. 012
摘要:
在工业互联网中,工厂的设备计算能力有限,边缘计算的出现有效缓解了现场设备的计算压力,提供低时延的计算服务。 有效的计算卸载策略能够更好地提供高质量的服务,如今大多数有关计算卸载的研究都是移动边缘计算,移动边缘计算的卸载策略在工业互联网中不适用, 因此研究工业互联网中基于边缘计算的计算卸载很有必要。 为此,提出了基于云边协同的计算卸载框架以及系统模型;基于此系统模型,以最小化任务时延为目标,将问题形式描述为 01 整数规划问题,并提出了基于混合整数线性规划算法的计算卸载策略解决该问题。 实验结果表明,与局部卸载方法和最小时延和能耗卸载方法相比,提出的基于云边协同的计算卸载方法在时延上分别降低了 4% 和 10% ,提高了系统性能。
Abstract:
In the industrial Internet,the computing power of the equipment in the factory is limited,and the emergence of edge computing has effectively alleviated the computing pressure of field devices and provided low-latency computing services. Effective computation of floading strategies can better provide high-quality services. Nowadays,most of the research on computation offloading is mobile edge computing. The offloading strategy of mobile edge computing is not applicable in the industrial Internet. Therefore,it is necessary to research the computation offloading based on edge computing in the industrial Internet. To this end,a computation offloading framework and system model based on cloud-side collaboration are proposed. Based on this system model,with the goal of minimizing task delay,the problem form is described as a 01 integer programming problem,and a mixed integer linear programming algorithm is proposed. The computation offloading strategy solves this problem. The experimental results show that compared with the partial offloading method and the minimum delay and energy offloading method, the proposed cloud - side collaborative computation offloading method reduces the delay by 4% and 10% ,respectively,and improves the system performance.

相似文献/References:

[1]沈大港,范鹏飞,周慧娟,等.面向车联网基于边缘计算的点对点信息传输[J].计算机技术与发展,2021,31(08):139.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 024]
 SHEN Da-gang,FAN Peng-fei,ZHOU Hui-juan,et al.Point-to-point Information Communication Based on Edge Computing for Internet of Vehicle[J].,2021,31(04):139.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 024]
[2]张云飞,高 岭,丁彩玲,等.边缘计算环境下改进蚁群算法的任务调度算法[J].计算机技术与发展,2021,31(09):86.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 015]
 ZHANG Yun-fei,GAO Ling,DING Cai-ling,et al.Improved Task Scheduling Algorithm of Ant Colony Algorithm in Edge Computing[J].,2021,31(04):86.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 015]
[3]王 闯,沈苏彬.一种基于多智能体的分布式深度神经网络算法[J].计算机技术与发展,2021,31(12):45.[doi:10. 3969 / j. issn. 1673-629X. 2021. 12. 008]
 WANG Chuang,SHEN Su-bin.A Distributed Deep Neural Network Algorithm Based on Multi-agent[J].,2021,31(04):45.[doi:10. 3969 / j. issn. 1673-629X. 2021. 12. 008]
[4]林广栋,黄光红,陆俊峰.一款人工智能芯片上 FCOS 模型的应用研究[J].计算机技术与发展,2023,33(05):9.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 002]
 LIN Guang-dong,HUANG Guang-hong,LU Jun-feng.Application of FCOS Model on an AI Chip[J].,2023,33(04):9.[doi:10. 3969 / j. issn. 1673-629X. 2023. 05. 002]
[5]薛 锋,张雅文,陈思光.基于 D2D 协同的边缘计算迁移机制研究[J].计算机技术与发展,2023,33(06):117.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 018]
 XUE Feng,ZHANG Ya-wen,CHEN Si-guang.Research on Edge Computing Offloading Mechanism Based on D2D Collaboration[J].,2023,33(04):117.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 018]
[6]张海超,赖金山,刘 东,等.边缘计算下的轻量级联邦学习隐私保护方案[J].计算机技术与发展,2023,33(09):161.[doi:10. 3969 / j. issn. 1673-629X. 2023. 09. 024]
 ZHANG Hai-chao,LAI Jin-shan,LIU Dong,et al.Lightweight Federated Learning Privacy Protection Scheme under Edge Computing[J].,2023,33(04):161.[doi:10. 3969 / j. issn. 1673-629X. 2023. 09. 024]
[7]王 冠,张倩倩.基于 SGX 的车联网身份认证方案研究[J].计算机技术与发展,2023,33(11):99.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 015]
 WANG Guan,ZHANG Qian-qian.Research on Identity Authentication Scheme Based on SGX in Internet of Vehicles[J].,2023,33(04):99.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 015]
[8]王志良,何 刚*,俞文心,等.边缘场景下动态联邦学习优化方法[J].计算机技术与发展,2024,34(02):98.[doi:10. 3969 / j. issn. 1673-629X. 2024. 02. 015]
 WANG Zhi-liang,HE Gang*,YU Wen-xin,et al.Dynamic Federated Learning Optimization Method in Edge Scenarios[J].,2024,34(04):98.[doi:10. 3969 / j. issn. 1673-629X. 2024. 02. 015]
[9]赵尚维康,孙 君.工业物联网中基于 SMDP 的协同卸载方案[J].计算机技术与发展,2022,32(09):76.[doi:10. 3969 / j. issn. 1673-629X. 2022. 09. 012]
 ZHAO Shang-wei-kang,SUN Jun.Multi-MEC Collaborative Computing Unloading Scheme Based on SMDP in Industrial Internet of Things[J].,2022,32(04):76.[doi:10. 3969 / j. issn. 1673-629X. 2022. 09. 012]

更新日期/Last Update: 2022-04-10