[1]张 旺,侯海良.含约束和通信时滞的多智能体系统包含控制[J].计算机技术与发展,2022,32(03):34-39.[doi:10. 3969 / j. issn. 1673-629X. 2022. 03. 006]
 ZHANG Wang,HOU Hai-liang.Containment Control for Sampling Multi-Agent System with Input Constraints and Communication Delays[J].,2022,32(03):34-39.[doi:10. 3969 / j. issn. 1673-629X. 2022. 03. 006]
点击复制

含约束和通信时滞的多智能体系统包含控制()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年03期
页码:
34-39
栏目:
人工智能
出版日期:
2022-03-10

文章信息/Info

Title:
Containment Control for Sampling Multi-Agent System with Input Constraints and Communication Delays
文章编号:
1673-629X(2022)03-0034-06
作者:
张 旺侯海良
湖南人文科技学院 信息学院,湖南 娄底 417000
Author(s):
ZHANG WangHOU Hai-liang
School of Information,Hunan University of Humanities,Science and Technology,Loudi 417000,China
关键词:
多智能体包含控制采样系统输入约束通信时滞
Keywords:
multi-agentcontainment controlsampled systeminput constraintscommunication delays
分类号:
TP273;TP18
DOI:
10. 3969 / j. issn. 1673-629X. 2022. 03. 006
摘要:
随着人工智能的发展,包含控制成为近年来研究的热点问题。 为了解决有向切换通信拓扑下含非凸输入约束和通信时滞的采样多智能体系统包含控制问题,设计了一种基于投影的分布式非线性包含控制算法。 该算法只需要利用智能体自身和相邻智能体的交互信息就能实现输入受限跟随者的包含。 首先将跟随者与领导者构成的凸区域的最大距离选定为李雅普诺夫函数,接着引入约束算子描述跟随者的非凸约束,并将系统的非凸模型转化时变线性模型,然后运用李雅普诺夫稳定性理论、凸分析等方法证明了在通信拓扑的并集中只要每个跟随者至少有一条从领导者到该跟随者的有向路径,李亚普诺夫函数就能收敛到 0,也就是带输入约束和通信时滞的跟随者最终能够保留在领导者所形成的凸区域内。最后通过数值仿真证明了所提出的控制算法能够解决输入受限的包含控制问题。
Abstract:
With the development of artificial intelligence,containment control has become a hot topic in recent years. In order to solve the containment control problem of sampled-data multi-agent systems with nonconvex input constraints, communication delays and directed switching topologies,a distributed nonlinear containment control algorithm based? ? ?on projection is designed. The containment control of each follower with input constraint can be achieved by using the information of itself and the local interaction information. Firstly,the maximum distance from the followers to the convex region formed leaders is chosen as the Lyapunov function. A constraint operator is introduced to describe the nonconvex constraint of the follower. The nonconvex system model is transformed into a time-varying linear model. Then,by using Lyapunov stability theory and convex analysis,it is proved that the Lyapunov function converges to 0 as long as each follower has at least one directed path from leaders to it in the union of communication topologies,namely,the followers with input constraints and communication delays can eventually remain in the convex region formed by leaders. Finally,? ?a numerical simulation is given to show that the proposed control algorithm can solve this input-constrained containment control problem.

相似文献/References:

[1]曹雷 陈希亮.作战智能体分队攻击目标分配模型研究[J].计算机技术与发展,2009,(12):150.
 CAO Lei,CHEN Xi-liang.Research on Dynamic Weapon Target Assignment in Combat Agent Unit[J].,2009,(03):150.
[2]刘丹 谢益武.面向智能体的信息系统开发方法研究[J].计算机技术与发展,2006,(03):101.
 LIU Dan,XIE Yi-wu.Research on Development Methods in Agent-Oriented IS[J].,2006,(03):101.
[3]张礼华 卢道华.基于多Agent的网络课程协作学习平台的构建与研究[J].计算机技术与发展,2006,(09):126.
 ZHANG Li-hua,LU Dao-hua.Construction and Study of Cooperation - Learning Platform for Network Course Based on Multi- Agent[J].,2006,(03):126.
[4]陈 雪,姜玉莲*.分布式事件触发的多单摆系统一致性跟踪控制[J].计算机技术与发展,2020,30(09):177.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 032]
 CHEN Xue,JIANG Yu-lian*.Consensus Tracking Control of Multiple Simple-pendulum Network System Based on Distributed Event Triggering Mechanism[J].,2020,30(03):177.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 032]
[5]宋燕燕,秦 军,邢艳芳,等.基于多智能体的图优化 SLAM 构建方法[J].计算机技术与发展,2020,30(11):205.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 038]
 SONG Yan-yan,QIN Jun,XING Yan-fang,et al.An Optimizing SLAM Construction Method Based on Multi-agent[J].,2020,30(03):205.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 038]
[6]王 闯,沈苏彬.一种基于多智能体的分布式深度神经网络算法[J].计算机技术与发展,2021,31(12):45.[doi:10. 3969 / j. issn. 1673-629X. 2021. 12. 008]
 WANG Chuang,SHEN Su-bin.A Distributed Deep Neural Network Algorithm Based on Multi-agent[J].,2021,31(03):45.[doi:10. 3969 / j. issn. 1673-629X. 2021. 12. 008]
[7]朱辰阳,赵春晓.个人快速交通动态任务分配问题的优化研究[J].计算机技术与发展,2022,32(11):127.[doi:10. 3969 / j. issn. 1673-629X. 2022. 11. 019]
 ZHU Chen-yang,ZHAO Chun-xiao.Research on Optimization of Dynamic Task Allocation in Personal Rapid Transit[J].,2022,32(03):127.[doi:10. 3969 / j. issn. 1673-629X. 2022. 11. 019]
[8]王 军,曹 雷,陈希亮,等.智能博弈对抗类型及其关键技术[J].计算机技术与发展,2022,32(S2):1.[doi:10. 3969 / j. issn. 1673-629X. 2022. S2. 001]
 WANG Jun,CAO Lei,CHEN Xi-liang,et al.Types and Key Technologies of Intelligent Game Confrontations[J].,2022,32(03):1.[doi:10. 3969 / j. issn. 1673-629X. 2022. S2. 001]
[9]郭 鑫,王 微,青 伟,等.基于强化学习的多智能体泛化性研究[J].计算机技术与发展,2023,33(04):114.[doi:10. 3969 / j. issn. 1673-629X. 2023. 04. 017]
 GUO Xin,WANG Wei,QING Wei,et al.Research on Generalization of Multi-agent Based on Reinforcement Learning[J].,2023,33(03):114.[doi:10. 3969 / j. issn. 1673-629X. 2023. 04. 017]

更新日期/Last Update: 2022-03-10