[1]孙艳文,詹天明.基于优化 BP 神经网络的销售预测算法研究[J].计算机技术与发展,2022,32(01):35-39.[doi:10. 3969 / j. issn. 1673-629X. 2022. 01. 007]
 SUN Yan-wen,ZHAN Tian-ming.Research on Sales Forecasting Based on Improved BP Neural Network[J].,2022,32(01):35-39.[doi:10. 3969 / j. issn. 1673-629X. 2022. 01. 007]
点击复制

基于优化 BP 神经网络的销售预测算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
32
期数:
2022年01期
页码:
35-39
栏目:
大数据分析与挖掘
出版日期:
2022-01-10

文章信息/Info

Title:
Research on Sales Forecasting Based on Improved BP Neural Network
文章编号:
1673-629X(2022)01-0035-05
作者:
孙艳文詹天明
南京审计大学 信息工程学院,江苏 南京 211200
Author(s):
SUN Yan-wenZHAN Tian-ming
School of Information Engineering,Nanjing Audit University,Nanjing 211200,China
关键词:
时间序列优化 BP 神经网络遗传算法销售预测BP 神经网络
Keywords:
time seriesoptimized BP neural networkgenetic algorithmsales forecastBP neural network
分类号:
TP391. 1
DOI:
10. 3969 / j. issn. 1673-629X. 2022. 01. 007
摘要:
已知国内房屋售价具有一定的不完整的规律性,其会因季节变换、人群流动、国家相关政策等一系列因素而呈现一定的规律。 与此同时,该规律性并没有确定的单一因子可以直接影响,故其售价与全部因素之间的关系也是非线性的。针对这一问题,利用神经网络输入量的非线性、冗杂性和可不完整性,对一段时期内的房屋售价进行预测是一种合理的预测方法。 基于 BP 神经网络传输阈值的不确定性,利用时间序列方法对因子数据进行平行预测,再利用遗传算法和 BP 神经网络对所得结果进行二次优化,以达到接近实际的精准预测的目的。 经过使用某房地产企业的历史销售数据进行反复仿真实验,其结果表明所提出的优化算法模型预测精度逼近于实际销售结果,达到了精准预测的目标。
Abstract:
It is known that the price of houses in China has some incomplete regularity,which will show a certain regularity due to a seriesof factors such as seasonal change,crowd flow,and relevant national policies. At the same time,there is no definite single factor that candirectly affect the regularity,so the relationship between the price and all factors is nonlinear. In order to solve this problem, it is areasonable forecasting method to forecast the house price in a period of time by using the nonlinear,miscellaneous and incomplete input ofneural network. Based on the uncertainty of the transmission threshold of BP neural network,the time series method is used to predict thefactor data in parallel,and then the genetic algorithm and BP neural network are used to optimize the results for the purpose of accurateprediction. Through repeated simulation experiments with the historical sales data of a real estate enterprise, it is showed that theprediction accuracy of the proposed optimization algorithm model is close to the actual sales results,and achieves the goal of accurate prediction.

相似文献/References:

[1]赵伟 梁循.互联网金融信息量与收益率波动关联研究[J].计算机技术与发展,2009,(12):1.
 ZHAO Wei,LIANG Xun.Research on Relationship Between Internet Financial Information and Fluctuation of Price - Earnings[J].,2009,(01):1.
[2]张虹 赵兵 钟华.基于小波多尺度的网络论坛话题热度趋势预测[J].计算机技术与发展,2009,(04):76.
 ZHANG Hong,ZHAO Bing,ZHONG Hua.Hot Trend Prediction of Network Forum Topic Based on Wavelet Multi - Resolution Analysis[J].,2009,(01):76.
[3]常毅 王加阳.时态信息系统转换方法研究[J].计算机技术与发展,2008,(07):15.
 CHANG Yi,WANG Jia-yang.Research on Method of Translating TIS to IS[J].,2008,(01):15.
[4]施尧 赵勇 杨雪洁 赵妹 张燕平 关有训 王克强.基于覆盖算法的大气质量预测[J].计算机技术与发展,2008,(07):190.
 SHI Yao,ZHAO Yong,YANG Xue-jie,et al.Application of Covering Algorithm to Prediction of Air Quality[J].,2008,(01):190.
[5]何星星 孙德山.模糊神经网络与SARIMA结合的时间序列预测模型[J].计算机技术与发展,2008,(08):61.
 HE Xing-xing,SUN De-shan.A Time Series Forecasting Model Using a Hybrid Fuzzy Neural Network and SARIMA[J].,2008,(01):61.
[6]兰妥 江弋 刘光生.基于Sas的时间序列缺失值处理方法比较[J].计算机技术与发展,2008,(10):43.
 LAN Tuo,JIANG Yi,LIU Guang-sheng.Comparison of Methods on Time Series' Missing Value Based on Sas[J].,2008,(01):43.
[7]查春生 倪志伟 倪丽萍 公维峰.基于相空间重构的股价时间序列相关性分析[J].计算机技术与发展,2010,(08):17.
 ZHA Chun-sheng,NI Zhi-wei,NI Li-ping,et al.Correlations Analysis Between Stock Index Time Serials Based on Reconstructed Phase Space[J].,2010,(01):17.
[8]贾瑞玉 王亮 王会颖.二维CVVT方法在时间序列分析中的应用研究[J].计算机技术与发展,2007,(05):160.
 JIA Rui-yu,WANG Liang,WANG Hui-ying.Research for Applications of 2D - CWT Approach in Time Series Analysis[J].,2007,(01):160.
[9]张诚 郑诚.基于时间的模糊关联规则挖掘[J].计算机技术与发展,2007,(07):60.
 ZHANG Cheng,ZHENG Cheng.Fuzzy Association Rules Mining over Time[J].,2007,(01):60.
[10]胡蓉.多输出支持向量回归及其在股指预测中的应用[J].计算机技术与发展,2007,(10):226.
 HE Rong.Application of Multi - Output Support Vector Regression in Stock Market Index Forecasting[J].,2007,(01):226.

更新日期/Last Update: 2022-01-10