[1]孙荣荣,杨舒一,单 飞,等.基于视觉和灰度共生矩阵的医学影像质量评价[J].计算机技术与发展,2021,31(增刊):146-150.[doi:10. 3969 / j. issn. 1673-629X. 2021. S. 029]
 SUN Rong-rong,YANG Shu-yi,SHAN Fei,et al.Pulmonary Medical Image Quality Assessment Based on Human VisualCharacteristics and Gray Level Co-occurrence Matrix[J].,2021,31(增刊):146-150.[doi:10. 3969 / j. issn. 1673-629X. 2021. S. 029]
点击复制

基于视觉和灰度共生矩阵的医学影像质量评价()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年增刊
页码:
146-150
栏目:
应用前沿与综合
出版日期:
2021-12-31

文章信息/Info

Title:
Pulmonary Medical Image Quality Assessment Based on Human VisualCharacteristics and Gray Level Co-occurrence Matrix
文章编号:
1673-629X(2021)S0146-05
作者:
孙荣荣1 杨舒一2 单 飞2 高林峰3 史维雅2 叶 雯2 赵 芳2 姚 杰3
1. 上海市计量测试技术研究院,上海 201203;
2. 上海市公共卫生临床中心,上海 201508;
3. 上海市疾病预防控制中心,上海 200336
Author(s):
SUN Rong-rong1 YANG Shu-yi2 SHAN Fei2 GAO Lin-feng3 SHI Wei-ya2 YE Wen2 ZHAO Fang2 YAO Jie3
1. Shanghai Institute of Measurement and Testing Technology,Shanghai 201203;
2. Shanghai Public Health Clinical Center,Shanghai 201508;
3. Shanghai Municipal Center for Disease Control and Prevention,Shanghai 200336
关键词:
医学影像质量评价灰度共生矩阵肺部影像人类视觉特性支持向量回归纹理
Keywords:
medical image quality assessmentgray level co-occurrence matrixpulmonary imagehuman visual characteristicssupportvector regressiontexture
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2021. S. 029
摘要:
研究医学图像质量评价算法具有重要的意义,但医学影像因其多样、复杂等特性对其质量评价有较多困难。 针对此问题,该文提出基于人类视觉特性和灰度共生矩阵的肺部医学影像质量评价方法。 首先求得肺部图像的灰度共生矩阵,然后求得灰度共生矩阵的能量、对比度、自相关、均匀性特征,作为医学影像的特征向量,输入到支持向量回归算法预测影像质量。 收集了肺部 CT 和 MRI 影像若干,由有经验的胸部放射学医生对影像质量进行评分,得到主观评分值,然后用文中方法对肺部医学影像质量进行评分。 分别用斯皮尔曼等级次序相关系数、皮尔逊线性相关系数来衡量客观评价方法测试结果与主观评价之间的一致性。 实验结果表明,该方法取得了优良而稳定的结果,较好地符合主观质量评分和人类视觉特性。
Abstract:
The medical image quality assessment ( IQA) method has important significance. However, it is difficult for medical IQAbecause of its diversity and complexity. There fore, we propose the pulmonary medical image quality assessment method based on human visual characteristics and gray level co-occurrence matrix ( GLCMS) innovatively. GLCM of pulmonary image is obtained firstly,then the energy,contrast,correlation and homogeneity of the GLCMS are extracted as the feature vector of the medical images. Finally these features are taken as the inputs to the support vector regression ( SVR) algorithm to predict the image quality. The Pulmonary CT and MRI images of patients are collected,the images quality are evaluated by experienced doctor,then the subjective scores of image quality are obtained. The objective score of image quality is evaluated by the method,and the Spearman rank order correlation coefficient and Pearson linear correlation coefficient are used to measure the consistency between the objective assessment and subjective assessment. The experiment demonstrates that the proposed method is outstanding, stable and achieves better human visual characteristics and subjective perceived consistency.

相似文献/References:

[1]李晶 姚明海.基于支持向量机的语义图像分类研究[J].计算机技术与发展,2010,(02):75.
 LI Jing,YAO Ming-hai.Research of Semantic Image Classification Based on Support Vector Machine[J].,2010,(增刊):75.
[2]王森 陈炬桦.基于神经网络和综合特征的车牌定位算法[J].计算机技术与发展,2008,(02):38.
 WANG Sen,CHEN Ju-hua.Algorithm of Car Plate Location Based on Neural Network and Integrated Features[J].,2008,(增刊):38.
[3]焦蓬蓬 郭依正 刘丽娟 卫星.灰度共生矩阵纹理特征提取的Matlab实现[J].计算机技术与发展,2012,(11):169.
 JIAO Peng-peng,GUO Yi-zheng,LIU Li-juan,et al.Implementation of Gray Level Co-occurrence Matrix Texture Feature Extraction Using Matlab[J].,2012,(增刊):169.
[4]王萍,张媛,李聪,等. 基于灰度共生矩阵的特征构建及超折射滤除[J].计算机技术与发展,2014,24(08):1.
 WANG Ping,ZHANG Yuan,LI Cong,et al. Feature Construction and AP Clutter Filtering Based on Gray Lever Co-occurrence Matrix[J].,2014,24(增刊):1.
[5]崔红霞,黄科涵.基于混合纹理的计算机自动分类方法[J].计算机技术与发展,2018,28(02):158.[doi:10.3969/j.issn.1673-629X.2018.02.034]
 CUI Hong-xia,HUANG Ke-han.Computer Automatic Classification Method Based on Mixed Texture[J].,2018,28(增刊):158.[doi:10.3969/j.issn.1673-629X.2018.02.034]
[6]宋辉,刘奉华.基于数据预分析的虹膜识别方法[J].计算机技术与发展,2018,28(08):58.[doi:10.3969/ j. issn.1673-629X.2018.08.012]
 SONG Hui,LIU Feng-hua.An Iris Recognition Method Based on Data Pre-analysis[J].,2018,28(增刊):58.[doi:10.3969/ j. issn.1673-629X.2018.08.012]
[7]张 莉,张 成,郝 岩,等.基于多尺度多色域特征融合的乳腺癌图像分类[J].计算机技术与发展,2022,32(04):176.[doi:10. 3969 / j. issn. 1673-629X. 2022. 04. 030]
 ZHANG Li,ZHANG Cheng,HAO Yan,et al.Breast Cancer Histopathological Image Classification Based on Multi-scale and Multi-gamut Feature Fusion[J].,2022,32(增刊):176.[doi:10. 3969 / j. issn. 1673-629X. 2022. 04. 030]

更新日期/Last Update: 2021-09-10