[1]李 威,李 楠,于清玲.基于 Faster RCNN 的可回收物自动分类算法研究[J].计算机技术与发展,2021,31(增刊):100-105.[doi:10. 3969 / j. issn. 1673-629X. 2021. S. 020]
 LI Wei,LI Nan,YU Qing-ling.Research on Automatic Classification Algorithm of Recyclables Based on Faster RCNN[J].,2021,31(增刊):100-105.[doi:10. 3969 / j. issn. 1673-629X. 2021. S. 020]
点击复制

基于 Faster RCNN 的可回收物自动分类算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年增刊
页码:
100-105
栏目:
应用前沿与综合
出版日期:
2021-12-31

文章信息/Info

Title:
Research on Automatic Classification Algorithm of Recyclables Based on Faster RCNN
文章编号:
1673-629X(2021)S0100-06
作者:
李 威李 楠于清玲
沈阳工业大学 信息科学与工程学院,辽宁 沈阳 110870
Author(s):
LI WeiLI NanYU Qing-ling
School of Information Science and Engineering,Shenyang University of Technology,Shenyang 110870,China
关键词:
垃圾分类深度学习目标检测Faster RCNN区域建议网络锚框
Keywords:
classificationdeep learningtarget detectionFaster RCNNregion proposal networkanchor
分类号:
TP391. 4
DOI:
10. 3969 / j. issn. 1673-629X. 2021. S. 020
摘要:
利用机器视觉对可回收物进行自动分类识别可以提高废品回收再利用的效率。 应用改进的 Faster RCNN 算法对办公区四种常见的可回收物,塑料瓶、易拉罐、玻璃瓶和纸张进行自动分类识别。 通过对特征提取网络和区域建议网络进行改进,提升 Faster RCNN 算法的检测精度。 对第三方专业数据平台科赛网提供的可回收物图像库和自采图像库分别进行训练和测试。 对存在相似特征的玻璃瓶和塑料瓶误检率较高问题,引入待检目标的重量特征,提高了对二者的召回率。实验结果表明,结合重量特征的改进 Faster RCNN 算法在四类可回收物识别精度上分别为 92. 28% 、87. 78% 、89. 25% 和91. 24% ,平均检测时间为 0. 202 秒,提升了可回收物自动分类识别的效率。
Abstract:
Using machine vision to automatically classify and identify recyclables can improve the efficiency of waste recycling. Using the improved Faster RCNN algorithm to automatically classify and identify four common recyclables in the office area,plastic bottles,cans,glass bottles and paper. Improve the detection accuracy of Faster RCNN algorithm by improving the feature extraction network and regionproposal network. Train and test the recyclables image library provided by the third - party professional data platform Kesai. com,and train and test self - collected image library. For glass bottles and plastic bottles with similar characteristics, the false detection rate is relatively high. The introduction of the weight characteristics of the target to be inspected improves the recall rate of both. The experimental results show that the improved Faster RCNN algorithm combined with weight characteristics has 92. 28% ,87. 78% ,89.25% and 91. 24% in the recognition accuracy of the four types of recyclables,and the average detection time is 0. 202 seconds,which improves the efficiency of automatic classification and recognition of recyclables.

相似文献/References:

[1]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
 CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].,2016,26(增刊):19.
[2]贺飞翔,赵启军. 基于深度学习的头部姿态估计[J].计算机技术与发展,2016,26(11):1.
 HE Fei-xiang,ZHAO Qi-jun. Head Pose Estimation Based on Deep Learning[J].,2016,26(增刊):1.
[3]曾志平[] [],萧海东[],张新鹏[]. 基于DBN的金融时序数据建模与决策[J].计算机技术与发展,2017,27(04):1.
 ZENG Zhi-ping[] [],XIAO Hai-dong[],ZHANG Xin-peng[]. Modeling and Decision-making of Financial Time Series Data with DBN[J].,2017,27(增刊):1.
[4]李宏林. 分析式纹理合成技术及其在深度学习的应用[J].计算机技术与发展,2017,27(11):7.
 LI Hong-lin. Analyzed Texture-synthesis Techniques and Their Applications in Deep Learning[J].,2017,27(增刊):7.
[5]曲之琳,胡晓飞.基于改进激活函数的卷积神经网络研究[J].计算机技术与发展,2017,27(12):77.[doi:10.3969/ j. issn.1673-629X.2017.12.017]
 QU Zhi-lin,HU Xiao-fei.Research on Convolutional Neural Network Based on Improved Activation Function[J].,2017,27(增刊):77.[doi:10.3969/ j. issn.1673-629X.2017.12.017]
[6]吴 超,邵 曦.基于深度学习的指静脉识别研究[J].计算机技术与发展,2018,28(02):200.[doi:10.3969/j.issn.1673-629X.2018.02.043]
 WU Chao,SHAO Xi.Research on Finger Vein Recognition Based on Deep Learning[J].,2018,28(增刊):200.[doi:10.3969/j.issn.1673-629X.2018.02.043]
[7]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].,2018,28(增刊):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[8]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
 SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].,2018,28(增刊):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
[9]高翔,陈志,岳文静,等.基于视频场景深度学习的人物语义识别模型[J].计算机技术与发展,2018,28(06):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
 GAO Xiang,CHEN Zhi,YUE Wen-jing,et al.Human Semantic Recognition Model Based on Video Scene Deep Learning[J].,2018,28(增刊):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
[10]王嘉文,王传栋,杨雁莹.一种中文人名识别的训练架构[J].计算机技术与发展,2018,28(07):53.[doi:10.3969/ j. issn.1673-629X.2018.07.012]
 WANG Jia-wen,WANG Chuan-dong,YANG Yan-ying.A Training Framework for Chinese Name Recognition[J].,2018,28(增刊):53.[doi:10.3969/ j. issn.1673-629X.2018.07.012]

更新日期/Last Update: 2021-09-10