相似文献/References:
[1]陈锦禾 沈洁.基于信息熵的主动学习半监督分类研究[J].计算机技术与发展,2010,(02):110.
CHEN Jin-he,SHEN Jie.Active Learning Based on Information Entropy for Semi- supervised Classification[J].,2010,(12):110.
[2]陈东泳 钟尚平.基于半监督学习的JPEG图像通用隐写检测方法[J].计算机技术与发展,2009,(02):169.
CHEN Dong-yong,ZHONG Shang-ping.A Universal Steganalysis Method for JPEG Images Based on Semi - supervised Learning[J].,2009,(12):169.
[3]徐庆伶 汪西莉.一种基于支持向量机的半监督分类方法[J].计算机技术与发展,2010,(10):115.
XU Qing-ling,WANG Xi-li.A Novel Semi-Supervised Classification Method Based on SVM[J].,2010,(12):115.
[4]戴林 姜梅.基于半监督学习的入侵检测系统[J].计算机技术与发展,2011,(01):162.
DAI Lin JIANG Mei.Semi-Supervised Learning-Based Network Intrusion Detection System[J].,2011,(12):162.
[5]李亚娥,汪西莉.一种自适应的半监督图像分类算法[J].计算机技术与发展,2013,(02):112.
LI Ya-e,WANG Xi-li.An Adaptive Semi-supervised Image Classification Algorithm[J].,2013,(12):112.
[6]朱乔亚,陈可佳,方彪. 采用位置信息的半监督链接预测方法[J].计算机技术与发展,2015,25(07):63.
ZHU Qiao-ya,CHEN Ke-jia,FANG Biao. A Semi-supervised Link Prediction Method Using Place Features[J].,2015,25(12):63.
[7]陆海洋[],荆晓远[],董西伟[],等. 基于代价敏感学习的软件缺陷预测方法[J].计算机技术与发展,2015,25(11):58.
LU Hai-yang[],JING Xiao-yuan[],DONG Xi-wei[],et al. Software Defect Prediction Based on Cost-sensitive Learning[J].,2015,25(12):58.
[8]史作婷,吴 迪,荆晓远,等.类不平衡稀疏重构度量学习软件缺陷预测[J].计算机技术与发展,2018,28(06):125.[doi:10.3969/ j. issn.1673-629X.2018.06.028]
SHI Zuo-ting,WU Di,JING Xiao-yuan,et al.Prediction of Defect of Class-imbalance Sparse Reconstruction Metric Learning Software[J].,2018,28(12):125.[doi:10.3969/ j. issn.1673-629X.2018.06.028]
[9]王晴[],荆晓远[][],朱阳平[],等. 基于局部稀疏重构度量学习的软件缺陷预测[J].计算机技术与发展,2016,26(11):54.
WANG Qing[],JING Xiao-yuan[][],ZHU Yang-ping[],et al. Software Defect Prediction of Metric Learning Based on Local Sparse Reconstruction[J].,2016,26(12):54.
[10]郑文静,李雷. 基于聚类核的半监督情感分类算法研究[J].计算机技术与发展,2016,26(12):87.
ZHENG Wen-jing,LI Lei. Research on Semi-supervised Sentiment Classification Based on Cluster Kernel[J].,2016,26(12):87.
[11]张志武[],荆晓远[][],吴飞[]. 基于非负稀疏图的协同训练软件缺陷预测[J].计算机技术与发展,2017,27(07):38.
ZHANG Zhi-wu[],JING Xiao-yuan[] [],WU Fei[]. Defect Prediction of Co-training Software with Non-negative Sparse Graph[J].,2017,27(12):38.