[1]李亚娥,汪西莉.一种自适应的半监督图像分类算法[J].计算机技术与发展,2013,(02):112-114.
 LI Ya-e,WANG Xi-li.An Adaptive Semi-supervised Image Classification Algorithm[J].,2013,(02):112-114.
点击复制

一种自适应的半监督图像分类算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年02期
页码:
112-114
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
An Adaptive Semi-supervised Image Classification Algorithm
文章编号:
1673-629X(2013)02-0112-03
作者:
李亚娥汪西莉
陕西师范大学 计算机科学学院
Author(s):
LI Ya-eWANG Xi-li
关键词:
图像分类半监督半监督学习
Keywords:
image classificationSemi-supervisedSemi-supervised learning
文献标志码:
A
摘要:
基于局部和全局一致性算法本身带有一定数量的参数,而参数delta的选取对算法迭代过程的迭代次数和分类结果很敏感,通常是通过实验手动设置,这种做法相对比较耗时.为了解决该问题,提高算法分类效率,文中针对该问题将算法应用到图像分类中提出了一种自适应的参数设置方法,确定参数delta的最佳取值范围.通过实验结果可以看出,确定的参数范围的取值能使算法的分类正确率最高、迭代过程所用的时间最短.因此本方法能有效地提高算法的分类效率
Abstract:
Learning with local and global consistency algorithm with a certain number of parameters, and the parameter selection of delta is sensitive about the number of iterations of the algorithm iterative process and classification results , usually by manually set of experi-ments, this approach is relatively time-consuming. In order to solve the problem,improve the classification efficiency of algorithm, this paper applies the algorithm to image classification and proposes an adaptive parameter setting method, determining the best range of the parameter delta. The experimental results show that, this paper determines the values of the parameter range can make highest classifica-tion correct rate and shortest iterative time of the algorithm;therefore this method can effectively improve the classification efficiency of algorithm

相似文献/References:

[1]张江 王年 梁栋 唐俊.基于Laplace谱的图像分类[J].计算机技术与发展,2008,(05):73.
 ZHANG Jiang,WANG Nian,LIANG Dong,et al.Image Classification Based on Laplacian Spectra[J].,2008,(02):73.
[2]刘炯 徐同阁.基于NetFlow的应用协议半监督识别算法[J].计算机技术与发展,2010,(07):9.
 LIU Jiong,XU Tong-ge.A Semi-Supervised Clustering Algorithm for Application Protocol Recognition Based on NetFlow[J].,2010,(02):9.
[3]周伟 武港山.基于显著图的花卉图像分类算法研究[J].计算机技术与发展,2011,(11):15.
 ZHOU Wei,WU Gang-shan.Research on Saliency Map Based Flower Image Classification Algorithm[J].,2011,(02):15.
[4]汪旗,贾兆红.基于多示例学习的图像分类算法[J].计算机技术与发展,2014,24(04):88.
 WANG Qi[],JIA Zhao-hong[].Image Categorization by Multi-instance Learning[J].,2014,24(02):88.
[5]武苏雯,赵慧杰,刘 鑫,等.基于迁移学习的图像分类在诗词中的应用研究[J].计算机技术与发展,2021,31(07):215.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 036]
 WU Su-wen,ZHAO Hui-jie,LIU Xin,et al.Research on Application of Image Classification Based onTransfer Learning in Poetry[J].,2021,31(02):215.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 036]
[6]阮航,孙涵.基于 Faster R-CNN 的车辆多属性识别[J].计算机技术与发展,2018,28(10):129.[doi:10.3969/ j. issn.1673-629X.2018.10.027]
 RUAN Hang,SUN Han.Vehicle Multi-attribute Recognition Based on Faster R-CNN[J].,2018,28(02):129.[doi:10.3969/ j. issn.1673-629X.2018.10.027]
[7]王 敏,陈立潮,曹建芳,等.Hadoop 下自适应随机权值多特征融合图像分类[J].计算机技术与发展,2018,28(11):30.[doi:10.3969/ j. issn.1673-629X.2018.11.007]
 WANG Min,CHEN Li-chao,CAO Jian-fang,et al.Multi-feature Fusion Image Classification of Adaptive Random Weight Based on Hadoop[J].,2018,28(02):30.[doi:10.3969/ j. issn.1673-629X.2018.11.007]
[8]阮航,王立春.基于特征图的车辆检测和分类[J].计算机技术与发展,2018,28(11):39.[doi:10.3969/ j. issn.1673-629X.2018.11.009]
 RUAN Hang,WANG Li-chun.Vehicle Detection and Classification Based on Feature Map[J].,2018,28(02):39.[doi:10.3969/ j. issn.1673-629X.2018.11.009]
[9]李一波,郭培宜,张森悦.深度卷积神经网络中激活函数的研究[J].计算机技术与发展,2021,31(09):61.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 011]
 LI Yi-bo,GUO Pei-yi,ZHANG Sen-yue.Research on Activation Function in Deep Convolutional Neural Network[J].,2021,31(02):61.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 011]
[10]陈玉红,刘晓静*.基于卷积神经网络的唐卡尊像自动分类研究[J].计算机技术与发展,2021,31(12):167.[doi:10. 3969 / j. issn. 1673-629X. 2021. 12. 028]
 CHEN Yu-hong,LIU Xiao-jing*.Research on Automatic Classification of Thangka Images Based on Convolutional Neural Network[J].,2021,31(02):167.[doi:10. 3969 / j. issn. 1673-629X. 2021. 12. 028]

更新日期/Last Update: 1900-01-01