[1]杨 健,孙 涵.基于深度特征提取的无人机检测算法[J].计算机技术与发展,2021,31(11):71-75.[doi:10. 3969 / j. issn. 1673-629X. 2021. 11. 012]
 YANG Jian,SUN Han.Drone Detection Based on Depth Feature Extraction[J].,2021,31(11):71-75.[doi:10. 3969 / j. issn. 1673-629X. 2021. 11. 012]
点击复制

基于深度特征提取的无人机检测算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年11期
页码:
71-75
栏目:
图形与图像
出版日期:
2021-11-10

文章信息/Info

Title:
Drone Detection Based on Depth Feature Extraction
文章编号:
1673-629X(2021)11-0071-05
作者:
杨 健孙 涵
南京航空航天大学 计算机科学与技术学院,江苏 南京 211106
Author(s):
YANG JianSUN Han
School of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China
关键词:
无人机检测小目标检测深度学习像素洗牌层间特征金字塔
Keywords:
drone detectionsmall object detectiondeep learningpixel shuffleinter-layer feature pyramid
分类号:
TP31
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 11. 012
摘要:
随着无人机技术在生产生活中的广泛应用,由其引起的公共安全、隐私保护等问题也日渐突出,因此基于计算机视觉的无人机检测技术逐渐成为当下的研究热点。 目前,常用的深度学习目标检测方法如 Faster-RCNN、Yolo 等在通用的目标检测领域已经可以获得良好的检测性能。 但是在无人机检测任务上,由于目标小、边缘设备算力低等限制因素,常用的目标检测算法无法有效地应对这些难题。 对此,文中基于轻量级无人机检测网络 TIB-Net,引入改进的特征融合模块,将层间特征金字塔模型与像素洗牌方法结合并集成到主干网络,提出了基于深度特征提取的无人机检测算法。 该算法不仅通过像素洗牌增强了小目标的细节特征,同时由于层间金字塔的引入,扩大了深度网络的感受野,增强了网络特征提取能力。 最终在无人机数据集上进行了测试,对比结果显示该算法对无人机检测的效果有明显提升,最终 mAP 达到90. 4% 。
Abstract:
With the widespread application of the drone technology in daily life, the issues about public safety,privacy protection and others caused by? ? ? ? ? it have become increasingly prominent. Therefore,drone detection technology based on computer vision has gradually become a research hot? spot. At present,most object detection methods based on deep learning such as Faster - RCNN,Yolo and other shave achieved outstanding performance in the common object detection field. However,due to the limitation factors of small target and low computing power of edge devices,the commonly used object detection algorithms cannot effectively deal with these problems. In this regard,based on the lightweight? ?drone detection network TIB-Net,we propose an improved super-resolution inter-layer feature fusion algorithm by combining pixel shuffle method with inter-layer feature pyramid structure and integrating it into backbone. This algorithm not only enhances the detailed features of small targets through the super-resolution method,but also expands the receptive field of the deep network due to the inter-layer pyramid structure,and greatly enhances the feature extraction ability of the network. After testing on the drone dataset provided by TIB-Net,the comparative results show that the effect of the proposed algorithm in UAV detection has been significantly improved,and the final mAP reaches 90. 4% .

相似文献/References:

[1]陶晓力,刘宁钟,沈家全.基于深度信息融合的航拍车辆检测[J].计算机技术与发展,2019,29(09):117.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 023]
 TAO Xiao-li,LIU Ning-zhong,SHEN Jia-quan.Aerial Vehicle Detection Based on Depth Information Fusion[J].,2019,29(11):117.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 023]
[2]产世兵,刘宁钟,沈家全.基于轻量级网络的 PCB 元器件检测[J].计算机技术与发展,2020,30(10):14.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 003]
 CHAN Shi-bing,LIU Ning-zhong,SHEN Jia-quan.PCB Component Detection Based on Lightweight Network[J].,2020,30(11):14.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 003]
[3]杨朝晨,陈佳悦,邢 可,等.基于改进的 DSSD 的小目标检测算法研究[J].计算机技术与发展,2022,32(06):63.[doi:10. 3969 / j. issn. 1673-629X. 2022. 06. 011]
 YANG Zhao-chen,CHEN Jia-yue,XING Ke,et al.Small Target Detection Algorithm Based on Improved DSSD[J].,2022,32(11):63.[doi:10. 3969 / j. issn. 1673-629X. 2022. 06. 011]
[4]刘梦菲,毛建华,陆小锋.基于注意力和上下文感知的海面渔桩检测[J].计算机技术与发展,2023,33(08):144.[doi:10. 3969 / j. issn. 1673-629X. 2023. 08. 021]
 LIU Meng-fei,MAO Jian-hua,LU Xiao-feng.Detection of Fishing Piles on Sea Surface Based on Attention and Context Awareness[J].,2023,33(11):144.[doi:10. 3969 / j. issn. 1673-629X. 2023. 08. 021]
[5]文 青,伍 欣,敖 斌,等.基于航空图像的目标检测算法 Trans_YOLOv5[J].计算机技术与发展,2024,34(01):77.[doi:10. 3969 / j. issn. 1673-629X. 2024. 01. 012]
 WEN Qing,WU Xin,AO Bin,et al.Target Detection Algorithm Trans_YOLOv5 Based on Aerial Image[J].,2024,34(11):77.[doi:10. 3969 / j. issn. 1673-629X. 2024. 01. 012]
[6]魏雅丽,牛为华.改进 YOLOv5s 的轻量化航拍小目标检测算法[J].计算机技术与发展,2024,34(02):53.[doi:10. 3969 / j. issn. 1673-629X. 2024. 02. 008]
 WEI Ya-li,NIU Wei-hua.Aerial Small Target Detection Based on Improved YOLOv5s Lightweight Algorithm[J].,2024,34(11):53.[doi:10. 3969 / j. issn. 1673-629X. 2024. 02. 008]
[7]赵 侃,汪慧兰,郭娇娇,等.基于 DTA-FSAF 的无人机小目标检测研究[J].计算机技术与发展,2024,34(04):101.[doi:10. 3969 / j. issn. 1673-629X. 2024. 04. 016]
 ZHAO Kan,WANG Hui-lan,GUO Jiao-jiao,et al.Research on Small Object Detection of UAV Based on DTA-FSAF[J].,2024,34(11):101.[doi:10. 3969 / j. issn. 1673-629X. 2024. 04. 016]
[8]耿 文,孙 涵.一种 Anchor Free 的无人机检测方法[J].计算机技术与发展,2021,31(01):54.[doi:10. 3969 / j. issn. 1673-629X. 2021. 01. 010]
 GENG Wen,SUN Han.An Anchor Free Method for Detecting Drones[J].,2021,31(11):54.[doi:10. 3969 / j. issn. 1673-629X. 2021. 01. 010]
[9]马田源,孙 涵.改进 RetinaNet 特征融合方式的无人机检测方法[J].计算机技术与发展,2022,32(12):103.[doi:10. 3969 / j. issn. 1673-629X. 2022. 12. 016]
 MA Tian-yuan,SUN Han.An Improved Feature Fusion Method for Drone Detection Based on RetinaNet Extraction[J].,2022,32(11):103.[doi:10. 3969 / j. issn. 1673-629X. 2022. 12. 016]

更新日期/Last Update: 2021-11-10