[1]方承志,李晨曦,张子渊.窄带物联网中下行信道估计算法的研究与优化[J].计算机技术与发展,2021,31(09):99-103.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 017]
 FANG Cheng-zhi,LI Chen-xi,ZHANG Zi-yuan.Research and Optimization of Downlink Channel Estimation Algorithm in Narrowband Internet of Things[J].,2021,31(09):99-103.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 017]
点击复制

窄带物联网中下行信道估计算法的研究与优化()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年09期
页码:
99-103
栏目:
网络与安全
出版日期:
2021-09-10

文章信息/Info

Title:
Research and Optimization of Downlink Channel Estimation Algorithm in Narrowband Internet of Things
文章编号:
1673-629X(2021)09-0099-05
作者:
方承志李晨曦张子渊
南京邮电大学 电子与光学工程学院、微电子学院,江苏 南京 210023
Author(s):
FANG Cheng-zhiLI Chen-xiZHANG Zi-yuan
School of Electronic and Optical Engineering,School of Microelectronics,Nanjing University of Posts and Telecommunications,Nanjing 210023,China
关键词:
窄带物联网信道估计插值反距离权重加权幂指数
Keywords:
narrowband Internet of Thingschannel estimationinterpolationinverse distance weightweighted power exponent
分类号:
TP391. 44 ;TN929. 5
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 09. 017
摘要:
支持低功耗广覆盖的广域网新兴技术的窄带物联网(NB-IoT) 是物联网市场中增长最快的领域之一,其中的关键技术信道估计是准确恢复发送信号的重要步骤。传统的常数插值、线性插值和 DFT 等插值算法存在着估计精度和算法复杂度之间的问题。 针对 NB-IoT 系统低功耗的要求,提出一种改进的反距离权重(IDW) 插值算法。 该算法引入距离权重,将周围已知点与待估点之间的距离进行加权平均,即在时域方向上利用周围导频点对非导频点的影响进行插值。 仿真结果显示,该算法的精度优于常数插值和线性插值,略差于 DFT 插值。 与传统信道估计算法相比,该算法提高了估计精度,降低了算法复杂度,均方误差(MSE) 也显示有良好的性能。 同时在不同信道中有近似的性能,有较好的鲁棒性,可以实现应用。
Abstract:
Narrow band Internet of Things (NB-IoT) ,which supports the emerging technology of wide-area network? ? with low power consumption and wide coverage,is one of the fastest growing areas in the Internet of Things market, where channel estimation,a key technology,is an important step in accurately restoring transmitted signal. Traditional interpolation algorithms,such as constant interpolation,linear interpolation and DFT,have problems between estimation accuracy and algorithm complexity. An improved inverse distance weight( IDW) interpolation algorithm is proposed to meet the requirements of low power consumption in NB IOT system. The distance weight is introduced into the algorithm,and the distance between the known points and the estimated points is weighted and averaged. In other words,the influence of non pilot points is interpolated by surrounding pilot points in time domain. Simulation shows that the accuracy of the proposed algorithm is better than constant interpolation and linear interpolation,and slightly worse than DFT interpolation. Compared with the traditional channel estimation algorithm, the proposed algorithm improves the estimation accuracy, reduces the algorithm complexity,and shows great performance in the mean square error (MSE) . At the same time,it has similar performance in different channels and better robustness,which can be applied.

相似文献/References:

[1]张子杰 彭端 张欣 刘高星.基于信道估计的SC-FDMA自适应传输方案[J].计算机技术与发展,2012,(03):35.
 ZHANG Zi-jie,PENG Duan,ZHANG Xin,et al.An Adaptive Transmission Scheme of SC-FDMA Based on Channel Estimation[J].,2012,(09):35.
[2]张欣 彭端 张子杰 刘高星.基于LTE上行的改进LMMSE信道估计算法[J].计算机技术与发展,2012,(06):97.
 ZHANG Xin,PENG Duan,ZHANG Zi-jie,et al.An Improved LMMSE Channel Estimation Algorithm for LTE Uplink[J].,2012,(09):97.
[3]彭钰,侯晓赟.基于二维压缩感知的双选信道估计[J].计算机技术与发展,2013,(10):220.
 PENG Yu,HOU Xiao-yun.Doubly Selective Channel Estimation Based on Two Dimension Compressed Sensing[J].,2013,(09):220.
[4]王红娟,仲伟志. 基于OFDM的卫星移动通信信道估计算法研究[J].计算机技术与发展,2014,24(09):37.
 WANG Hong-juan,ZHONG Wei-zhi. Study on Channel Estimation Algorithm in Mobile Satellite Communication Based on OFDM[J].,2014,24(09):37.
[5]何信旺[],芮赟[],王宗杰[],等. 滤波器组UMTS系统的信道估计研究[J].计算机技术与发展,2015,25(09):57.
 HE Xin-wang[],RUI Yun[],WANG Zong-jie[],et al. Research on Channel Estimation of Filter Bank UMTS System[J].,2015,25(09):57.
[6]玲玲,齐丽娜. 特征字典与自适应联合的BCS-UWB信道估计[J].计算机技术与发展,2015,25(12):195.
 WANG Ling-ling,QI Li-na. Ultra-wideband Channel Estimation Based on Bayesian Compressive Sensing of Eigen-based Dictionary and Adaptive Joint[J].,2015,25(09):195.
[7]孙君,高杰.基于压缩感知的自适应导频信道估计[J].计算机技术与发展,2016,26(10):184.
 SUN Jun,GAO Jie. Adaptive Pilot Channel Estimation Based on Compressive Sensing[J].,2016,26(09):184.
[8]李晓婷. 大规模MIMO双向中继系统的功率分配[J].计算机技术与发展,2017,27(02):143.
 LI Xiao-ting. Power Allocation of Massive MIMO Two-way Relay System[J].,2017,27(09):143.
[9]崔雪伟,张更新,谢继东,等.低轨卫星物联网数据传输流程设计[J].计算机技术与发展,2019,29(09):128.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 025]
 CUI Xue-wei,ZHANG Geng-xin,XIE Ji-dong,et al.Design of Segmented LEO Satellite IoT Data Transmission Process[J].,2019,29(09):128.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 025]
[10]陈林奎,徐 鹤.基于 NB-IoT 的课堂管理系统设计[J].计算机技术与发展,2020,30(11):195.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 036]
 CHEN Lin-kui,XU He.Design of Classroom Management System Based on NB-IoT[J].,2020,30(09):195.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 036]

更新日期/Last Update: 2021-09-10