[1]覃忠台,张明军.基于协同过滤算法的学习资源推荐模型研究[J].计算机技术与发展,2021,31(09):31-35.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 006]
 QIN Zhong-tai,ZHANG Ming-jun.Research on Learning Resource Recommendation Model Based on Collaborative Filtering Algorithm[J].,2021,31(09):31-35.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 006]
点击复制

基于协同过滤算法的学习资源推荐模型研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年09期
页码:
31-35
栏目:
大数据分析与挖掘
出版日期:
2021-09-10

文章信息/Info

Title:
Research on Learning Resource Recommendation Model Based on Collaborative Filtering Algorithm
文章编号:
1673-629X(2021)09-0031-05
作者:
覃忠台张明军
广州大学华软软件学院,广东 广州 510990
Author(s):
QIN Zhong-taiZHANG Ming-jun
Software Engineering Institute of Guangzhou,Guangzhou 510990,China
关键词:
协同过滤学习资源推荐模型在线学习行为信息
Keywords:
collaborative filteringlearning resourcesrecommendation modelonline learningbehavior information
分类号:
TP301. 6
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 09. 006
摘要:
传统的推荐算法由于存在数据稀疏性和冷启动问题,导致在线学习平台在资源推荐上不能满足学习用户的个性化需求。 为此,构建一个基于协同过滤算法的学习资源推荐模型,在推荐过程中融入学习用户的属性特征信息,进行学习资源个性化推荐。 首先,在给出学习资源推荐模型的基础上分别构建了学习用户模型和资源模型;其次,在构建学习用户-学习资源评分矩阵的基础上采用基于修正的余弦相似度的改进算法结合学习用户的行为信息进行相似度计算和预测评分;最后,将学习用户模型和学习资源模型的特征信息融入推荐过程并实现学习资源的个性化推荐。 通过对模型测试和实验的 MAE 值比对分析,基于协同过滤算法的学习资源推荐模型在推荐精度和个性化方面均优于传统的推荐算法模型。
Abstract:
Due to the problems of data sparsity and cold start in the traditional recommendation algorithm,the online learning platform cannot meet the personalized needs of learning users in resource recommendation. Therefore, we construct a learning resource recommendation model based on collaborative filtering algorithm,integrate the attribute feature information of learning users into the recommendation process,and carry out personalized recommendation of learning resources. Firstly,based on the proposed learning resource recommendation model,the learning user model and the learning resource model are constructed respectively. Secondly,on the basis of constructing the learning user learning resource scoring matrix, the improved algorithm based on modified cosine similarity is used to calculate and predict the score combining with the behavior information of the learning user. Finally,the feature information of learning user model and learning resource model is integrated into the recommendation process, and personalized recommendation of learning resources is realized. Through the comparison and analysis of MAE value between model test and experiment,the learning resource recommendation model based on collaborative filtering algorithm is better than the traditional recommendation algorithm model in recommendation accuracy and personalization.

相似文献/References:

[1]邵延振 蒙韧 袁鼎荣 李新友.基于Web结构分区的协同过滤推荐算法研究[J].计算机技术与发展,2010,(06):67.
 SHAO Yan-zhen,MENG Ren,YUAN Ding-rong,et al.Collaborative Filtering Recommendation Algorithm Research Based on Web Blocks[J].,2010,(09):67.
[2]查文琴 梁昌勇 曹镭.基于用户聚类的协同过滤推荐方法[J].计算机技术与发展,2009,(06):69.
 ZHA Wen-qin,LIANG Chang-yong,CAO Lei.Collaborative Filtering Recommendation Method Based on Clustering of Users[J].,2009,(09):69.
[3]姜雅倩 王直杰 张珏.基于供求关系及协同过滤技术的推荐模型研究[J].计算机技术与发展,2007,(06):18.
 JIANG Ya-qian,WANG Zhi-jie,ZHANG Jue.Research on Recommendation Model Based on Supply and Demand Relation and Collaborative Filtering[J].,2007,(09):18.
[4]游文 叶水生.电子商务推荐系统中的协同过滤推荐[J].计算机技术与发展,2006,(09):70.
 YOU Wen,YE Shui-sheng.A Survey of Collaborative Filtering Algorithm Applied in E- commerce Recommender System[J].,2006,(09):70.
[5]徐红 彭黎 郭艾寅 徐云剑.基于用户多兴趣的协同过滤策略改进研究[J].计算机技术与发展,2011,(04):73.
 XU Hong,PENG Li,GUO Ai-yin,et al.User-Based Collaborative Filtering Strategies More Interested in Improvement of Research[J].,2011,(09):73.
[6]杨东风 牛永洁.基于混合规则的图书推荐模型设计与研究[J].计算机技术与发展,2011,(07):210.
 YANG Dong-feng,NIU Yong-jie.Books Recommended Model Design and Research Based on Mixing Rules[J].,2011,(09):210.
[7]吴月萍 王娜 马良.基于蚁群算法的协同过滤推荐系统的研究[J].计算机技术与发展,2011,(10):73.
 WU Yue-ping,WANG Na,MA Liang.Research of Collaboration Filtering Recommendation System Based on Ant Algorithm[J].,2011,(09):73.
[8]李克潮,蓝冬梅.一种属性和评分的协同过滤混合推荐算法[J].计算机技术与发展,2013,(07):116.
 LI Ke-chao,LAN Dong-mei.A Collaborative Filtering Hybrid Recommendation Algorithm for Attribute and Rating[J].,2013,(09):116.
[9]范虎,花伟伟.协同过滤推荐算法的研究与改进[J].计算机技术与发展,2013,(09):66.
 FAN Hu[],HUA Wei-wei[].Research and Improvement of Collaborative Filtering Recommendation Algorithm[J].,2013,(09):66.
[10]李振博,徐桂琼,査九. 基于用户谱聚类的协同过滤推荐算法[J].计算机技术与发展,2014,24(09):59.
 LI Zhen-bo,XU Gui-qiong,ZHA Jiu. A Collaborative Filtering Recommendation Algorithm Based on User Spectral Clustering[J].,2014,24(09):59.
[11]聂黎生.基于行为分析的学习资源个性化推荐[J].计算机技术与发展,2020,30(07):34.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 008]
 NIE Li-sheng.Personalized Recommendation of Learning Resources Based on Behavior Analysis[J].,2020,30(09):34.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 008]

更新日期/Last Update: 2021-09-10