[1]尹玉婷,肖秦琨.基于深度卷积生成对抗网络的图像生成[J].计算机技术与发展,2021,31(04):86-92.[doi:10. 3969 / j. issn. 1673-629X. 2021. 04. 015]
 YIN Yu-ting,XIAO Qin-kun.Image Generation Based on Deep Convolution GenerativeAdversarial Networks[J].,2021,31(04):86-92.[doi:10. 3969 / j. issn. 1673-629X. 2021. 04. 015]
点击复制

基于深度卷积生成对抗网络的图像生成()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年04期
页码:
86-92
栏目:
图形与图像
出版日期:
2021-04-10

文章信息/Info

Title:
Image Generation Based on Deep Convolution GenerativeAdversarial Networks
文章编号:
1673-629X(2021)04-0086-07
作者:
尹玉婷肖秦琨
西安工业大学 电子信息工程学院,陕西 西安 710021
Author(s):
YIN Yu-tingXIAO Qin-kun
School of Electronic Information Engineering,Xi’an Technological University,Xi’n 710021,China
关键词:
生成对抗网络深度卷积网络变分自编码器图像生成梯度下降法
Keywords:
generative adversarial network deep convolutional network variational auto - encoder image generation gradientdescent method
分类号:
TP391. 4
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 04. 015
摘要:
图像生成是虚拟现实技术(virtual reality,VR)中的重要技术手段,针对传统图片生成方法需要大量的数据集进行训练, 且生成的图片轮廓不清晰等问题, 采用基于深度卷积神经网络和生成对抗网络来实现图片的生成。 为了保证生成图片的真实性和完整性,在图片生成阶段引入变分自编码器,通过编码器获取到输入图片数据的均值和方差,将图片对应的隐藏变量转化为标准的高斯分布,然后通过生成器生成新的图片;在识别阶段,采用深度卷积神经网络训练判别器,将生成的新的图片输入到已经训练好的判别器中,运用梯度下降法计算损失函数,不断优化整体系统模型。 通过对 MNIST图像数据集的训练,实验表明该方法能生成质量较高的图片,它生成的图像无法用肉眼与真实数据区分开,并且在不同网络条件下都有较高的识别率。 该方法提高了 MNIST 生成模型的技术水平。
Abstract:
Image generation is an important part of virtual reality (VR) . In order to solve the problem that traditional image generation method needs a large number of data sets? ?for training and the generated image contour is not clear, the deep convolutional neural network and generation adversation network are used to realize the image generation. To ensure the authenticity and integrity of the generated image, avariational auto-encoder is introduced in the image generation stage. The mean value? ? ? and variance of the input image data are obtained by the encoder, and the hidden variables corresponding to the image are transformed into the standard Gaussian distribution, then the new image is generated by the generator. In the recognition stage, the deep convolutional neural network is used to train the discriminator, and the generated new images are input into the trained discriminator. The gradient descent method is used to calculate the loss function and continuously optimize the overall system model. Through the training of MNIST image data set, the experiment shows that the proposed method can generate high-quality images which cannot be distinguished from the real data with the naked eye, with high recognition rate under different network conditions. It improves on the state of the art for generative models on MNIST.

相似文献/References:

[1]康嘉钰,苏凡军.基于生成对抗网络的长短兴趣推荐模型[J].计算机技术与发展,2020,30(06):35.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 007]
 KANG Jia-yu,SU Fan-jun.A Long-short-term Interests Recommendation Model Based on Generative Adversarial Networks[J].,2020,30(04):35.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 007]
[2]蒋文杰,罗晓曙*,戴沁璇.一种改进的生成对抗网络的图像上色方法研究[J].计算机技术与发展,2020,30(07):56.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 013]
 JIANG Wen-jie,LUO Xiao-shu*,DAI Qin-xuan.Research on an Improved Method of Generative Adversarial Networks Image Coloring[J].,2020,30(04):56.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 013]
[3]周传华,吴幸运,李 鸣.基于 WGAN 单帧人脸图像超分辨率算法[J].计算机技术与发展,2020,30(09):29.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 006]
 ZHOU Chuan-hua,WU Xing-yun,LI Ming.Single Frame Face Images Super-resolution Algorithm Based on WGAN[J].,2020,30(04):29.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 006]
[4]庄兴旺,丁岳伟.多维度注意力和语义再生的文本生成图像模型[J].计算机技术与发展,2020,30(12):27.[doi:10. 3969 / j. issn. 1673-629X. 2020. 12. 005]
 ZHUANG Xing-wang,DING Yue-wei.Text-to-image Model by Multidimensional Attention and Semantic Regeneration[J].,2020,30(04):27.[doi:10. 3969 / j. issn. 1673-629X. 2020. 12. 005]
[5]程换新,张志浩,刘文翰,等.基于生成对抗网络的图像识别[J].计算机技术与发展,2021,31(06):175.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 031]
 CHENG Huan-xin,ZHANG Zhi-hao,LIU Wen-han,et al.Image Recognition Based on Generative Adversarial Network[J].,2021,31(04):175.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 031]
[6]苑金辉,乔 艳,费烨琳,等.基于深度迁移学习的心脏 MRI 图像左心室分割[J].计算机技术与发展,2021,31(06):35.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 007]
 YUAN Jin-hui,QIAO Yan,FEI Ye-lin,et al.Left Ventricular Segmentation in Cardiac MRI Images Based onDeep Transfer Learning[J].,2021,31(04):35.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 007]
[7]王田丰,胡谷雨,王 睿,等.基于 AAE 的网络性能异常发现[J].计算机技术与发展,2021,31(07):113.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 019]
 WANG Tian-feng,HU Gu-yu,WANG Rui,et al.AAE-based Anomaly Detection for Network Performance[J].,2021,31(04):113.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 019]
[8]徐志鹏,卢官明,罗燕晴.基于 CycleGAN 的人脸素描图像生成[J].计算机技术与发展,2021,31(08):63.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 011]
 XU Zhi-peng,LU Guan-ming,LUO Yan-qing.Face Sketch Image Generation Based on CycleGAN[J].,2021,31(04):63.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 011]
[9]王荣达,刘宁钟,李强懿,等.一种基于生成对抗网络的轻量级图像翻译模型[J].计算机技术与发展,2021,31(11):52.[doi:10. 3969 / j. issn. 1673-629X. 2021. 11. 009]
 WANG Rong-da,LIU Ning-zhong,LI Qiang-yi,et al.A Lightweight Image-to-image Translation Model Based on GAN[J].,2021,31(04):52.[doi:10. 3969 / j. issn. 1673-629X. 2021. 11. 009]
[10]植炜基,刘春雨,郑婉君,等.基于生成对抗网络的人脸表情识别技术综述[J].计算机技术与发展,2021,31(增刊):1.[doi:10. 3969 / j. issn. 1673-629X. 2021. S. 001]
 ZHI Wei-ji,LIU Chun-yu,ZHENG Wan-jun,et al.Survey of Facial Expression Recognition Technology Based onGenerative Adversarial Network[J].,2021,31(04):1.[doi:10. 3969 / j. issn. 1673-629X. 2021. S. 001]

更新日期/Last Update: 2020-04-10