相似文献/References:
[1]康嘉钰,苏凡军.基于生成对抗网络的长短兴趣推荐模型[J].计算机技术与发展,2020,30(06):35.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 007]
KANG Jia-yu,SU Fan-jun.A Long-short-term Interests Recommendation Model Based on Generative Adversarial Networks[J].,2020,30(04):35.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 007]
[2]蒋文杰,罗晓曙*,戴沁璇.一种改进的生成对抗网络的图像上色方法研究[J].计算机技术与发展,2020,30(07):56.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 013]
JIANG Wen-jie,LUO Xiao-shu*,DAI Qin-xuan.Research on an Improved Method of Generative Adversarial Networks Image Coloring[J].,2020,30(04):56.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 013]
[3]周传华,吴幸运,李 鸣.基于 WGAN 单帧人脸图像超分辨率算法[J].计算机技术与发展,2020,30(09):29.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 006]
ZHOU Chuan-hua,WU Xing-yun,LI Ming.Single Frame Face Images Super-resolution Algorithm Based on WGAN[J].,2020,30(04):29.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 006]
[4]庄兴旺,丁岳伟.多维度注意力和语义再生的文本生成图像模型[J].计算机技术与发展,2020,30(12):27.[doi:10. 3969 / j. issn. 1673-629X. 2020. 12. 005]
ZHUANG Xing-wang,DING Yue-wei.Text-to-image Model by Multidimensional Attention and Semantic Regeneration[J].,2020,30(04):27.[doi:10. 3969 / j. issn. 1673-629X. 2020. 12. 005]
[5]程换新,张志浩,刘文翰,等.基于生成对抗网络的图像识别[J].计算机技术与发展,2021,31(06):175.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 031]
CHENG Huan-xin,ZHANG Zhi-hao,LIU Wen-han,et al.Image Recognition Based on Generative Adversarial Network[J].,2021,31(04):175.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 031]
[6]苑金辉,乔 艳,费烨琳,等.基于深度迁移学习的心脏 MRI 图像左心室分割[J].计算机技术与发展,2021,31(06):35.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 007]
YUAN Jin-hui,QIAO Yan,FEI Ye-lin,et al.Left Ventricular Segmentation in Cardiac MRI Images Based onDeep Transfer Learning[J].,2021,31(04):35.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 007]
[7]王田丰,胡谷雨,王 睿,等.基于 AAE 的网络性能异常发现[J].计算机技术与发展,2021,31(07):113.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 019]
WANG Tian-feng,HU Gu-yu,WANG Rui,et al.AAE-based Anomaly Detection for Network Performance[J].,2021,31(04):113.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 019]
[8]徐志鹏,卢官明,罗燕晴.基于 CycleGAN 的人脸素描图像生成[J].计算机技术与发展,2021,31(08):63.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 011]
XU Zhi-peng,LU Guan-ming,LUO Yan-qing.Face Sketch Image Generation Based on CycleGAN[J].,2021,31(04):63.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 011]
[9]王荣达,刘宁钟,李强懿,等.一种基于生成对抗网络的轻量级图像翻译模型[J].计算机技术与发展,2021,31(11):52.[doi:10. 3969 / j. issn. 1673-629X. 2021. 11. 009]
WANG Rong-da,LIU Ning-zhong,LI Qiang-yi,et al.A Lightweight Image-to-image Translation Model Based on GAN[J].,2021,31(04):52.[doi:10. 3969 / j. issn. 1673-629X. 2021. 11. 009]
[10]植炜基,刘春雨,郑婉君,等.基于生成对抗网络的人脸表情识别技术综述[J].计算机技术与发展,2021,31(增刊):1.[doi:10. 3969 / j. issn. 1673-629X. 2021. S. 001]
ZHI Wei-ji,LIU Chun-yu,ZHENG Wan-jun,et al.Survey of Facial Expression Recognition Technology Based onGenerative Adversarial Network[J].,2021,31(04):1.[doi:10. 3969 / j. issn. 1673-629X. 2021. S. 001]