[1]马瑞新,郭芳清,刘振娇,等.融合上下文信息与核密度估计的协同过滤推荐[J].计算机技术与发展,2021,31(04):34-39.[doi:10. 3969 / j. issn. 1673-629X. 2021. 04. 006]
 MA Rui-xin,GUO Fang-qing,LIU Zhen-jiao,et al.Collaborative Filtering Recommendation Algorithm for FusionContext Information and Kernel Density Estimation[J].,2021,31(04):34-39.[doi:10. 3969 / j. issn. 1673-629X. 2021. 04. 006]
点击复制

融合上下文信息与核密度估计的协同过滤推荐()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年04期
页码:
34-39
栏目:
大数据分析与挖掘
出版日期:
2021-04-10

文章信息/Info

Title:
Collaborative Filtering Recommendation Algorithm for FusionContext Information and Kernel Density Estimation
文章编号:
1673-629X(2021)04-0034-06
作者:
马瑞新郭芳清刘振娇陈志奎赵 亮
大连理工大学 软件学院,辽宁 大连 116620
Author(s):
MA Rui-xinGUO Fang-qingLIU Zhen-jiaoCHEN Zhi-kuiZHAO Liang
School of Software Technology,Dalian University of Technology,Dalian 116620,China
关键词:
协同过滤算法核密度估计上下文信息兴趣估计模型推荐系统
Keywords:
collaborative filtering algorithm kernel density estimation context information interest estimation model recommendationsystem
分类号:
TP301. 6
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 04. 006
摘要:
随着互联网信息技术的迅速发展,网络数据量快速增长,如何在海量数据中找到用户感兴趣的信息并实现个性化推荐是目前重要的研究方向。 协同过滤算法作为推荐系统中的经典方法被广泛应用于不同场景,但是仍然存在数据稀疏,以及在计算相似度时不能考虑到所有数据的问题,只能够利用具有共同评分的数据,严重影响了推荐的精确度。 针对上述存在的问题,提出了一种融合上下文信息与核密度估计的协同过滤个性化推荐算法。 该算法通过对用户和项目各自的上下文信息和已经存在的用户评分数据进行处理,通过核密度估计构建用户和项目的兴趣模型,充分挖掘了用户和项目的兴趣分布,以获得更准确的用户和项目兴趣相似度,降低预测评分误差。 在公开的数据集上验证表明,将该算法对比传统的协同过滤算法,有效提高了推荐的精确度。
Abstract:
With the development of Internet information technology and the growth of network data,how to find the information that users are interested in from the massive data and realize personalized recommendation is an important research direction at present. As a classic method in the recommendation system, collaborative filtering algorithm is widely used in different scenes,but it still cannot solve the problem of data sparsity,and in the calculation of similarity,it cannot take all the data into account and can only use the common data,which seriously affects the accuracy of recommendation. Aiming at the problems above, we propose a collaborative filtering recommendation fusing context information and kernel density estimation. The algorithm is based on the user and project their own context information and existing user rating data for processing, based on kernel method respectively to build user and project estimation model,fully taping the interest distribution of user and project,so as obtain more accurate similarity of user and project and reduce the prediction error. The validation on the open data set shows that compared with the traditional collaborative filtering algorithm, the proposed algorithm can effectively improve the accuracy of recommendation.

相似文献/References:

[1]孙剑芬.基于高斯核密度估计的运动目标检测新方法[J].计算机技术与发展,2010,(08):45.
 SUN Jian-fen.New Method for Moving Object Detection Based on Gaussian Kernel Density Estimation[J].,2010,(04):45.
[2]陈以超 洪汉玉 王俊 张剑 王成刚.一种鲁棒性的遥感图像地域分类新方法[J].计算机技术与发展,2007,(08):136.
 CHEN Yi-chao,HONG Han-yu,WANG Jun,et al.A New Robust Approach for Remote Sensing Image Regional Classification[J].,2007,(04):136.
[3]叶树鑫[],何聚厚[][]. 协作学习中基于协同过滤的学习资源推荐研究[J].计算机技术与发展,2014,24(10):63.
 YE Shu-xin[],HE Ju-hou[][]. esearch on Learning Material Recommendation Based on Collaborative Filtering Algorithm in Cooperative Learning[J].,2014,24(04):63.
[4]谢人强,陈震. 基于共同评分项和权重计算的推荐算法研究[J].计算机技术与发展,2016,26(09):69.
 XIE Ren-qiang,CHEN Zhen. Research on Recommendation Algorithm Based on Co-rating and Weight Calculation[J].,2016,26(04):69.
[5]熊开玲[],彭俊杰[],杨晓飞[],等. 基于核密度估计的K-means聚类优化[J].计算机技术与发展,2017,27(02):1.
 XIONG Kai-ling[],PENG Jun-jie[],YANG Xiao-fei[],et al. K-means Clustering Optimization Based on Kernel Density Estimation[J].,2017,27(04):1.
[6]马婉贞,钱育蓉. 基于标签匹配的协同过滤推荐算法研究[J].计算机技术与发展,2017,27(07):25.
 MA Wan-zhen,QIAN Yu-rong. Investigation on Collaborative Filtering Recommendation Algorithm with Tag Matching[J].,2017,27(04):25.
[7]杨大鑫,王荣波,黄孝喜,等.基于最小方差的 K-means 用户聚类推荐算法[J].计算机技术与发展,2018,28(01):104.[doi:10.3969/ j. issn.1673-629X.2018.01.022]
 YANG Da-xin,WANG Rong-bo,HUANG Xiao-xi,et al.K-means User Clustering Recommendation Algorithm Based on Minimum Variance[J].,2018,28(04):104.[doi:10.3969/ j. issn.1673-629X.2018.01.022]
[8]沈鹏,李涛.混合协同过滤算法在推荐系统中的应用[J].计算机技术与发展,2019,29(03):69.[doi:10.3969/ j. issn.1673-629X.2019.03.014]
 SHEN Peng,LI Tao.Application of Hybrid Collaborative Filtering Algorithm in Recommendation System[J].,2019,29(04):69.[doi:10.3969/ j. issn.1673-629X.2019.03.014]
[9]孔元元,白智远,张 飒,等.融合时间与兴趣相似度的产品推荐方法研究[J].计算机技术与发展,2019,29(09):195.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 037]
 KONG Yuan-yuan,BAI Zhi-yuan,ZHANG Sa,et al.Research on Products Recommendation Method Integrated with Time Weight and Interest Similarity[J].,2019,29(04):195.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 037]
[10]任静霞,武志峰.动态信任衰减和信息匹配的混合推荐算法[J].计算机技术与发展,2021,31(10):30.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 006]
 REN Jing-xia,WU Zhi-feng.Hybrid Recommendation Algorithm Based on Dynamic Trust Decay and Information Matching[J].,2021,31(04):30.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 006]

更新日期/Last Update: 2020-04-10