[1]冯向东,张玉琴,韩红伟,等.基于自组织神经网络在油气分层中的研究[J].计算机技术与发展,2021,31(02):44-48.[doi:10. 3969 / j. issn. 1673-629X. 2021. 02. 008]
 FENG Xiang-dong,ZHANG Yu-qin,HAN Hong-wei,et al.Research on Oil and Gas Stratification Based on Self-organizing Neural Network[J].,2021,31(02):44-48.[doi:10. 3969 / j. issn. 1673-629X. 2021. 02. 008]
点击复制

基于自组织神经网络在油气分层中的研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
31
期数:
2021年02期
页码:
44-48
栏目:
大数据分析与挖掘
出版日期:
2021-02-10

文章信息/Info

Title:
Research on Oil and Gas Stratification Based on Self-organizing Neural Network
文章编号:
1673-629X(2021)02-0044-05
作者:
冯向东张玉琴韩红伟张建亮
成都理工大学 工程技术学院,四川 乐山 614007
Author(s):
FENG Xiang-dongZHANG Yu-qinHAN Hong-weiZHANG Jian-liang
School of Engineering & Technology,Chengdu University of Technology,Leshan 614007,China
关键词:
测井曲线自动分层油层识别自组织神经网络算法模式识别
Keywords:
logging curveautomatic stratificationreservoir identificationself-organizing neural network algorithmpattern recognition
分类号:
TP399
DOI:
10. 3969 / j. issn. 1673-629X. 2021. 02. 008
摘要:
:测井曲线的分层研究是勘探和开发油气资源的重要手段,也是认识油气层的地质面貌,以及剖析油气藏量内在规律的一种有力武器。 该文介绍了一种基于自组织神经网络对测井曲线进行聚类自动分层的识别方法,它是一种通过网络自身的调节,从而对输入数据进行聚类的方法。该文采用某地区的油气层数据来建立网络模型,首先采用了插值的方法,消除该测井数据随机干扰带来的噪声,同时保留了数据的完整性和代表性;然后通过利用自组织神经网络算法,对该数据自动进行四层的识别分类;最后结合人工分层的结果进行验证,以保证利用自组织神经网络识别的结果更加客观和可靠。该方法的可操作性强,原理简单易于实现,说明该算法对研究测井曲线具备一定的有效性和可行性。
Abstract:
The logging curve stratification is an important means of oil and gas exploration and development,and also a powerful weapon to understand the geological features of oil and gas and to dissect the internal laws of oil and gas reserves. We introduce a recognition method based on self- organizing neural network for clustering and automatic stratification of logging curves,which is a method of clustering input data by adjusting the network itself. The data of oil and gas reservoir in a certain area is used to establish the network model. Firstly,the interpolation method is used to eliminate the noise caused by the random interference of the logging data,while preserving the integrity and representativeness of the data. Secondly, the self-organizing neural network algorithm is used to automatically identify and classify the data in four layers. Finally, the results of artificial stratification are verified to ensure the recognition results by self-organizing neural network are more objective and reliable. The method has strong operability,simple principle and easy implementation,which shows that it is effective and feasible for the study of logging curves.

相似文献/References:

[1]尚福华[],柴艳领[],杜睿山[],等. 小波双线性插值算法在测井曲线相似中的应用[J].计算机技术与发展,2015,25(09):66.
 HANG Fu-hua[],CHAI Yan-ling[],DU Rui-shan[],et al. Application of Wavelet Bilinear Interpolation Algorithm in Well-logging Curve Similarity[J].,2015,25(02):66.
[2]柴艳领[],唐志涛[].Haar 小波变换在测井曲线相似性对比中的应用[J].计算机技术与发展,2016,26(01):119.
 CHAI Yan-ling[],TANG Zhi-tao[]. pplication of Haar Wavelet Transform in Well-logging Curve Similarity[J].,2016,26(02):119.
[3]富 宇,李 滕,郭晓萍.基于支持向量机对优势渗流通道识别的研究[J].计算机技术与发展,2021,31(08):182.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 031]
 FU Yu,LI Teng,GUO Xiao-ping.Research on Identification of Dominant Seepage ChannelBased on Support Vector Machine[J].,2021,31(02):182.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 031]
[4]肖 红,张瑶瑶*,张福禄.改进的卷积神经网络及在地层识别中的应用[J].计算机技术与发展,2021,31(09):167.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 028]
 XIAO Hong,ZHANG Yao-yao*,ZHANG Fu-lu.Improved Convolution Neural Network and Its Application of Stratigraphic Identification[J].,2021,31(02):167.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 028]
[5]张可佳,方佳佳,高楷程,等.基于神经网络的岩性物性参数计算方法研究[J].计算机技术与发展,2022,32(06):186.[doi:10. 3969 / j. issn. 1673-629X. 2022. 06. 031]
 ZHANG Ke-jia,FANG Jia-jia*,GAO Kai-cheng,et al.Study on Calculation Method of Lithologic Physical Property Parameters Based on Neural Network[J].,2022,32(02):186.[doi:10. 3969 / j. issn. 1673-629X. 2022. 06. 031]
[6]曹茂俊,崔欣锋.基于一维卷积神经网络的地层智能识别方法[J].计算机技术与发展,2023,33(09):133.[doi:10. 3969 / j. issn. 1673-629X. 2023. 09. 020]
 CAO Mao-jun,CUI Xin-feng.Intelligent Stratigraphic Recognition Method Based on 1DCNN[J].,2023,33(02):133.[doi:10. 3969 / j. issn. 1673-629X. 2023. 09. 020]
[7]杜睿山,李宏杰,孟令东.基于 CNN-BiLSTM-AM 的储层岩石脆性指数预测[J].计算机技术与发展,2023,33(10):28.[doi:10. 3969 / j. issn. 1673-629X. 2023. 10. 005]
 DU Rui-shan,LI Hong-jie,MENG Ling-dong.Prediction of Reservoir Rock Brittleness Index Based on CNN-BiLSTM-AM[J].,2023,33(02):28.[doi:10. 3969 / j. issn. 1673-629X. 2023. 10. 005]
[8]尚福华,李金成*,原 野,等.基于改进 BP 神经网络的地层划分方法[J].计算机技术与发展,2020,30(09):148.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 027]
 SHANG Fu-hua,LI Jin-cheng*,YUAN Ye,et al.Stratigraphic Division Method Based on Improved BP Neural Network[J].,2020,30(02):148.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 027]

更新日期/Last Update: 2020-02-10