[1]黄东晋,秦 汉,郭 昊.基于 BERT-CNN 的电影原声智能问答系统[J].计算机技术与发展,2020,30(11):158-162.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 029]
 HUANG Dong-jin,QIN Han,GUO Hao.Movie Soundtrack Intelligent Question and Answer System Based on BERT-CNN[J].,2020,30(11):158-162.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 029]
点击复制

基于 BERT-CNN 的电影原声智能问答系统()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年11期
页码:
158-162
栏目:
应用开发研究
出版日期:
2020-11-10

文章信息/Info

Title:
Movie Soundtrack Intelligent Question and Answer System Based on BERT-CNN
文章编号:
1673-629X(2020)11-0158-05
作者:
黄东晋秦 汉郭 昊
上海大学 上海电影学院,上海 200072
Author(s):
HUANG Dong-jinQIN HanGUO Hao
Shanghai Film Academy,Shanghai University,Shanghai 200072,China
关键词:
智能问答知识图谱电影原声BERT-CNN 分类图数据库
Keywords:
intelligent question answering systemknowledge graphmovie soundtrackBERT-CNN classificationgraph database
分类号:
TP31
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 11. 029
摘要:
智能问答是自然语言处理领域一个非常重要的研究热点,传统的智能问答不能准确地理解用户的意图,从而无法返回准确的答案。 因此,提出了基于 BERT-CNN 算法的智能问答系统,并应用于电影原声领域,可以快速准确地反馈相关信息。 首先,构建电影原声的知识图谱,建立节点实体以及实体之间的关系,利用 Neo4j 图数据库对数据进行存储。 然后,通过基于规则和词典的方法进行实体识别,利用 BERT-CNN 分类算法对用户意图进行分类。 最后,根据用户意图和实体,将问句转化成知识图谱的查询语句,在数据库中查询后返回结果。 实验结果表明,构建的面向电影原声智能问答系统是可行的,采用 BERT-CNN 分类算法,分类准确率高达 91.24% ,能够实时得到问题答案的准确反馈,准确率达到 95% 以上。
Abstract:
ntelligent question answering is a quite important research hotspot in the field of natural language processing. Traditional intelligent question answering cannot accurately understand the user’s intention, so it cannot return accurate answers. Therefore, an intelligent question-and-answer system based on BERT-CNN algorithm is proposed and applied to the field of movie soundtrack,which can feedback relevant information quickly and accurately. First,the knowledge map of movie soundtrack is constructed,node entities and relationship between entities are established,and Neo4j graph database is used to store the data. Then,entity recognition is carried out based on rules and dictionaries, and user intention is classi-fied by BERT-CNN classi-fication algorithm. Finally, according to user intention and entity,the question is transformed into the query statement of knowledge graph,and the result is returned after the query in the data-base. The experiment shows that the constructed intelligent question-and-answer system oriented to the film soundtrack is feasible. The BERT-CNN classification algorithm is adopted, with the classification accuracy as high as 91.24% , and the accurate feedback of the questions can be obtained in real time,with the accuracy of more than 95% .

相似文献/References:

[1]孙艳,田丽梅. 基于多维尺度分析的舆情研究主题词知识图谱[J].计算机技术与发展,2016,26(04):187.
 SUN Yan,TIAN Li-mei. Mapping Knowledge Domain on Subject Headings of Public Sentiment Research Based on Multi-dimensional Scaling[J].,2016,26(11):187.
[2]刘申凯,周霁婷,朱永华,等.融合知识图谱和 ESA 方法的网络新词识别[J].计算机技术与发展,2019,29(03):12.[doi:10.3969/ j. issn.1673-629X.2019.03.003]
 LIU Shen-kai,ZHOU Ji-ting,ZHU Yong-hua,et al.Network New Word Recognition Based on Fusion of Knowledge Graph and ESA[J].,2019,29(11):12.[doi:10.3969/ j. issn.1673-629X.2019.03.003]
[3]戈其平,钟艳如.基于数学教学的知识图谱构建[J].计算机技术与发展,2019,29(03):187.[doi:10.3969/ j. issn.1673-629X.2019.03.039]
 GE Qi-ping,ZHONG Yan-ru.Construction of Knowledge Atlas Based on Mathematics Teaching[J].,2019,29(11):187.[doi:10.3969/ j. issn.1673-629X.2019.03.039]
[4]魏 瑾,李伟华,潘 炜.基于知识图谱的智能决策支持技术及应用研究[J].计算机技术与发展,2020,30(01):1.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 001]
 WEI Jin,LI Wei-hua,PAN Wei.Research on Intelligent Decision Support Technology and Application Based on Knowledge Graph[J].,2020,30(11):1.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 001]
[5]项 威,王 邦.中文事件抽取研究综述[J].计算机技术与发展,2020,30(02):1.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 001]
 XIANG Wei,WANG Bang.Survey of Chinese Event Extraction Research[J].,2020,30(11):1.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 001]
[6]刘家祝,郭 强,吴碧伟,等.基于子图相交的社交账号与知识图谱实体对齐[J].计算机技术与发展,2020,30(05):10.[doi:10. 3969 / j. issn. 1673-629X. 2020. 05. 003]
 LIU Jia-zhu,GUO Qiang,WU Bi-wei,et al.Subgraph Intersection Based Alignment between Social Media Account and Knowledge Graph Entity[J].,2020,30(11):10.[doi:10. 3969 / j. issn. 1673-629X. 2020. 05. 003]
[7]陆菁宇,张绍阳,黄文旎.学科发展状态的知识图谱构建[J].计算机技术与发展,2020,30(06):145.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 028]
 LU Jing-yu,ZHANG Shao-yang,HUANG Wen-ni.Analysis of Development Status of Discipline Based on Knowledge Graph[J].,2020,30(11):145.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 028]
[8]任佳妮,杨 阳.全球医疗机器人技术领域创新态势分析[J].计算机技术与发展,2021,31(04):158.[doi:10. 3969 / j. issn. 1673-629X. 2021. 04. 027]
 REN Jia-ni,YANG Yang.Analysis of Innovation Situation in Field of Global MedicalRobot Technology[J].,2021,31(11):158.[doi:10. 3969 / j. issn. 1673-629X. 2021. 04. 027]
[9]杨 泽,顾 磊.一种中国古典文学文本知识图谱构建方法[J].计算机技术与发展,2021,31(07):28.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 005]
 YANG Ze,GU Lei.A Method for Constructing Knowledge Graph of Chinese Classical Literature[J].,2021,31(11):28.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 005]
[10]刘 爽,杨 辉,李佳宜,等.面向多数据源的少数民族文化知识图谱构建[J].计算机技术与发展,2021,31(08):191.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 033]
 LIU Shuang,YANG Hui,LI Jia-yi,et al.Construction of Minority Cultural Knowledge Graph forMulti-data Sources[J].,2021,31(11):191.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 033]
[11]卢 琪,谢艺菲,谢 钧,等.知识图谱在智能问答中的应用研究[J].计算机技术与发展,2021,31(07):13.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 003]
 LU Qi,XIE Yi-fei,XIE Jun,et al.Research on Application of Knowledge Graphs in Intelligent Question Answering[J].,2021,31(11):13.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 003]
[12]刘 鹏,程浩然,王 莹,等.煤矿工种知识图谱智能问答研究[J].计算机技术与发展,2024,34(03):185.[doi:10. 3969 / j. issn. 1673-629X. 2024. 03. 027]
 LIU Peng,CHENG Hao-ran,WANG Ying,et al.Research on Intelligent Question Answering Based on Knowledge Graph of Coalmine Occupation[J].,2024,34(11):185.[doi:10. 3969 / j. issn. 1673-629X. 2024. 03. 027]

更新日期/Last Update: 2020-11-10