[1]产世兵,刘宁钟,沈家全.基于轻量级网络的 PCB 元器件检测[J].计算机技术与发展,2020,30(10):14-20.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 003]
 CHAN Shi-bing,LIU Ning-zhong,SHEN Jia-quan.PCB Component Detection Based on Lightweight Network[J].,2020,30(10):14-20.[doi:10. 3969 / j. issn. 1673-629X. 2020. 10. 003]
点击复制

基于轻量级网络的 PCB 元器件检测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年10期
页码:
14-20
栏目:
智能、算法、系统工程
出版日期:
2020-10-10

文章信息/Info

Title:
PCB Component Detection Based on Lightweight Network
文章编号:
1673-629X(2020)10-0014-07
作者:
产世兵刘宁钟沈家全
南京航空航天大学 计算机科学与技术学院,江苏 南京 211106
Author(s):
CHAN Shi-bingLIU Ning-zhongSHEN Jia-quan
School of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China
关键词:
PCB 元器件卷积神经网络轻量级网络小目标检测实时检测
Keywords:
PCB componentsconvolutional neural networklightweight networksmall target detectionreal-time detection
分类号:
TP391.4
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 10. 003
摘要:
随着电子工业的迅速发展,电路板元器件的缺陷检测愈加重要。 传统的人工检测方法效率很低,而且容易因为视觉疲劳造成错误检测,可靠性低,速度慢。 目前广泛应用的自动光学检测设备,缺点明显,速率低,对直插元器件的检测精度低,无法适应电路板元器件的多样性检测。 随着对卷积神经网络的深度 研究,神经网络在目标检测方面已经达到了优秀的效果,但是常见的网络对 PCB 元器件中的小目标以及实时检测并不理想。 对基于 Faster RCNN 和 PeleeNet 网络的研究,实现了轻量级小目标检测模型;通过先验知识修改了 RPN 网络的包围框大小;针对 PCB 元器件样本的小目标样本少的问题,利用了小目标样本增广技术,提高了整体的检测速度以及精度。 通过消融实验体现了改进部分对 PCB 元器件实时检测的重要性;通过对比实验,该方法在保证检测精确度降低很小的同时,缩小了模型的大小,在数据集上具有 0.858 mAP,检测时间为 0.034 s,相比 Faster RCNN(基础网络为 VGG16 或 ResNet50)的检测速度有了不错的提高。
Abstract:
With the rapid development of electronic industry, defect detection of circuit board components has become increasingly important. Traditional manual detection method is inefficient and easy to cause error detection due to visual fatigue,low reliability and slow speed. At present,the widely used automatic optical detecting equipment has obvious disadvantages, low speed, low detection precision for the components directly inserted, which cannot be adapted to the diversity detection of the circuit board components. With the in-depth study of convolutional neural networks,the neural network has achieved excellent results in target detection,but the common network is not ideal for small targets and real-time detection in PCB components. Based on the research of Faster RCNN and PeleeNet network,the lightweight small target detection model is realized. The bounding box size of the RPN network is modified by prior knowledge. Aiming at the problem of small target samples for PCB component, the? ?small target sample augmentation technology is used to improve the overall detection speed and accuracy. Through the ablation experiment, the importance of the improved part to the realtime detection of PCB components is reflected. Through the comparison experiment,the proposed method greatly reduces the size of the model under the premise of ensuring that the detection accuracy does not change much. In the data set,the mAP is 0. 858,and the detection time is 0. 034 s,which is a much higher rate than the Faster RCNN (VGG16 or ResNet50).

相似文献/References:

[1]崔凤焦.表情识别算法研究进展与性能比较[J].计算机技术与发展,2018,28(02):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
 CUI Feng-jiao.Research and Performance Comparison of Facial Expression Recognition Algorithm[J].,2018,28(10):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
[2]张丹丹,李雷. 基于PCANet-RF的人脸检测系统[J].计算机技术与发展,2016,26(02):31.
 ZHANG Dan-dan,LI Lei. Face Detection System Based on PCANet-RF[J].,2016,26(10):31.
[3]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].,2018,28(10):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[4]郭子琰,舒心,刘常燕,等.基于ReLU 函数的卷积神经网络的花卉识别算法[J].计算机技术与发展,2018,28(05):154.[doi:10.3969/j.issn.1673-629X.2018.05.035]
 GUO Ziyan,SHU Xin,LIU Changyan,et al.A Recognition Algorithm of Flower Based on Convolution Neural Network with ReLU Function[J].,2018,28(10):154.[doi:10.3969/j.issn.1673-629X.2018.05.035]
[5]缪宇杰,吴智钧,宫 婧.基于3D 卷积的视频错帧筛选方法[J].计算机技术与发展,2018,28(05):179.[doi:10.3969/ j. issn.1673-629X.2018.05.040]
 MIAO Yu-jie,WU Zhi-jun,GONG Jing.A Wrong Temporal-order Frames Identification Method Based on 3D Convolution[J].,2018,28(10):179.[doi:10.3969/ j. issn.1673-629X.2018.05.040]
[6]吴玉枝,吴志红,熊运余.基于卷积神经网络的小样本车辆检测与识别[J].计算机技术与发展,2018,28(06):1.[doi:10.3969/ j. issn.1673-629X.2018.06.001]
 WU Yu-zhi,WU Zhi-hong,XIONG Yun-yu.Vehicle Detection and Recognition of a Few Samples Based on Convolutional Neural Network[J].,2018,28(10):1.[doi:10.3969/ j. issn.1673-629X.2018.06.001]
[7]李相桥,李晨,田丽华,等.卷积神经网络并行训练的优化研究[J].计算机技术与发展,2018,28(08):12.[doi:10.3969/ j. issn.1673-629X.2018.08.003]
 LI Xiang-qiao,LI Chen,TIAN Li-hua,et al.Research on Optimization of Parallel Training for Convolution Neural Network[J].,2018,28(10):12.[doi:10.3969/ j. issn.1673-629X.2018.08.003]
[8]邓宗平,赵启军,陈虎. 基于深度学习的人脸姿态分类方法[J].计算机技术与发展,2016,26(07):11.
 DEND Zong-ping,ZHAO Qi-jun,CHEN Hu. Face Pose Classification Method Based on Deep Learning[J].,2016,26(10):11.
[9]河海大学 计算机与信息学院,江苏 南京 0098.卷积网络的无监督特征提取对人脸识别的研究[J].计算机技术与发展,2018,28(06):17.[doi:10.3969/ j. issn.1673-629X.2018.06.004]
 DU Bai-sheng.Research on Unsupervised Feature Extraction Based on Convolutional Neural Network for Face Recognition[J].,2018,28(10):17.[doi:10.3969/ j. issn.1673-629X.2018.06.004]
[10]高翔,陈志,岳文静,等.基于视频场景深度学习的人物语义识别模型[J].计算机技术与发展,2018,28(06):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
 GAO Xiang,CHEN Zhi,YUE Wen-jing,et al.Human Semantic Recognition Model Based on Video Scene Deep Learning[J].,2018,28(10):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]

更新日期/Last Update: 2020-10-10