[1]唐小敏,舒远仲,刘文祥,等.基于 SSD 深度网络的河道漂浮物检测技术研究[J].计算机技术与发展,2020,30(09):154-158.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 028]
 TANG Xiao-min,SHU Yuan-zhong,LIU Wen-xiang,et al.Research on River Floating Object Detection Technology Based on SSD Deep Network[J].,2020,30(09):154-158.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 028]
点击复制

基于 SSD 深度网络的河道漂浮物检测技术研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年09期
页码:
154-158
栏目:
应用开发研究
出版日期:
2020-09-10

文章信息/Info

Title:
Research on River Floating Object Detection Technology Based on SSD Deep Network
文章编号:
1673-629X(2020)09--0154-05
作者:
唐小敏舒远仲刘文祥刘金梅
南昌航空大学 信息工程学院,江西 南昌 330100
Author(s):
TANG Xiao-minSHU Yuan-zhongLIU Wen-xiangLIU Jin-mei
School of Information Engineering,Nanchang Hangkong University,Nanchang 330100,China
关键词:
河流漂浮物图像处理深度学习SSD目标识别
Keywords:
river floatingimage processingdeep learningSSDtarget recognition
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 09. 028
摘要:
针对无人机拍摄河流视频影像进行河流漂浮物的自动提取识别,提出了一种基于 SSD(single shot multibox detector)深度网络的河流漂浮物识别方法,SSD 利用 COCO 数据集的预训练网络模型进行迁移训练。 为得到漂浮物数据,利用传统图像处理技术对视频帧进行河流提取,河流提取准确率达 91.4%。 以河流视频截取图像为样本并采用软数据增强技术对漂浮物图像进行一定扩充,利用多种特征提取网络的 SSD 和 Faster R-CNN 深度网络进行样本训练并比较结果。实验结果表明,基于 ResNet-101 的 SSD 和 Faster R-CNN 深度网络模型召回率为 61.67% 和 58.83% ,F1 值为 71.29% 和 69.55% ,精度为 84.47% 和 85.05% 。 经实验数据对比分析,基于 ResNet-101 的 SSD 深度网络提高了河流漂浮物的精确检测。 利用传统图像处理技术和深度学习方法相结合能够准确、高效地识别出河流漂浮物,为无人机边缘计算提供研究基础和参考。
Abstract:
To automatically extract and identify river floats from river video by UAV,we propose a method for river float identification based on SSD (single shot multibox detector) depth network. The? pretrained network model of COCO dataset is used for migration training in SSD. In order to obtain floating object image data,river image extraction is performed on video frames using traditional image processing techniques. The river image extraction accuracy rate is 91.4% . Taking river video intercepted images as samples and using soft data enhancement technology? to expand the floating object image to a certain extent,the SSD and Faster R-CNN deep network of various feature extraction networks are used for sample training and the results are compared. The experiment shows that the recall rate of ResNet-101 based SSD and Faster R-CNN deep network model are 61.67% and 58.83% respectively,F1 values are 71.29% and 69.55% ,and the accuracy is 84.47% and 85.05% . Based on the comparative analysis of experimental data,the SSD depth network based on ResNet-101 is more suitable for the accurate detection of river floating objects. The combination of traditional image processing techniques and deep learning methods can identify floating objects in rivers accurately and efficiently,which provides a research basis and reference for UAV edge computing.

相似文献/References:

[1]李雷 张建民.一种改善的基于支持向量机的边缘检测算子[J].计算机技术与发展,2010,(03):125.
 LI Lei,ZHANG Jian-min.An Improved Edge Detector Using the Support Vector Machines[J].,2010,(09):125.
[2]张艳丽 保文星.粒子群优化算法在图像边缘检测中的研究应用[J].计算机技术与发展,2009,(05):26.
 ZHANG Yan-li,BAO Wen-xing.Research and Application of Image Edge Detection Based on PSO Algorithm[J].,2009,(09):26.
[3]詹金兰 李翠华.模拟实验系统的可视化研究[J].计算机技术与发展,2009,(05):228.
 ZHAN Jin-lan,LI Cui-hua.Visualization Research on Simulation Experiment System[J].,2009,(09):228.
[4]张家栋 张强 霍凯.图像处理在轴承荧光磁粉探伤中的应用研究[J].计算机技术与发展,2009,(08):216.
 ZHANG Jia-dong,ZHANG Qiang,HUO Kai.Study on Application of Image Processing in Bearing Fluorescent Magnetic Detection[J].,2009,(09):216.
[5]王文豪 张亚红 朱全银 单劲松.QR Code二维条形码的图像识别[J].计算机技术与发展,2009,(10):123.
 WANG Wen-hao,ZHANG Ya-hong,ZHU Quan-yin,et al.Image Recognition in 2 - D Bar Code Based on QR Code[J].,2009,(09):123.
[6]李孟歆 吴成东.粗糙集理论在图像处理中的应用[J].计算机技术与发展,2009,(03):208.
 LI Meng-xin,WU Cheng-dong.Rough Set Theory and Its Applications in Image Processing[J].,2009,(09):208.
[7]武彬.一种离焦模糊图像的复原方法[J].计算机技术与发展,2008,(01):74.
 WU Bin.A Method of Defocus Blurred Image Restoration[J].,2008,(09):74.
[8]蒋恩松 肖辉军 孙刘杰 熊清廉.基于机器视觉的套印误差自动检测系统设计[J].计算机技术与发展,2008,(07):173.
 JIANG En-song,XIAO Hui-jun,SUN Liu-jie,et al.Design of Automatic Detecting Printing Registration Deviation System Based on Machine Vision[J].,2008,(09):173.
[9]汪继文 林胜华 沈玉峰 邱剑锋.一种基于各向异性扩散的图像处理方法[J].计算机技术与发展,2008,(08):98.
 WANG Ji-wen,LIN Sheng-hua,SHEN Yu-feng,et al.An Approach for Image Restoration Based on Anisotropic Diffusion[J].,2008,(09):98.
[10]余志强 戎蒙恬 袁丹寿.一种用单端口SRAM构成的FIFO的ASIC设计[J].计算机技术与发展,2008,(09):159.
 YU Zhi-qiang,RONG Meng-tian,YUAN Dan-shou.ASIC Design of an FIFO Involving Single Port SRAM[J].,2008,(09):159.

更新日期/Last Update: 2020-09-10