[1]尚福华,李金成*,原 野,等.基于改进 BP 神经网络的地层划分方法[J].计算机技术与发展,2020,30(09):148-153.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 027]
 SHANG Fu-hua,LI Jin-cheng*,YUAN Ye,et al.Stratigraphic Division Method Based on Improved BP Neural Network[J].,2020,30(09):148-153.[doi:10. 3969 / j. issn. 1673-629X. 2020. 09. 027]
点击复制

基于改进 BP 神经网络的地层划分方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年09期
页码:
148-153
栏目:
应用开发研究
出版日期:
2020-09-10

文章信息/Info

Title:
Stratigraphic Division Method Based on Improved BP Neural Network
文章编号:
1673-629X(2020)09-0148-06
作者:
尚福华1李金成1*原 野2曹茂俊1杜睿山1
1. 东北石油大学 计算机与信息技术学院,黑龙江 大庆 163318; 2. 中国石油勘探开发研究院测井与遥感技术研究所,北京 100083
Author(s):
SHANG Fu-hua1LI Jin-cheng1*YUAN Ye2CAO Mao-jun1DU Rui-shan1
1. School of Computer and Information Technology,Northeast Petroleum University,Daqing 163318,China; 2. Research Institute of Petroleum Exploration and Development,PetroChina,Beijing 100083,China
关键词:
地层划分测井曲线自动分层L-M 算法神经网络
Keywords:
stratigraphic divisionlogging curvesautomatic stratificationLevenberg-Marquardt algorithmneural network
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 09. 027
摘要:
测井曲线分层是地球物理勘探利用测井资料了解地层情况首先要完成的基础工作。 针对测井曲线自动分层问题,提出了一种基于改进 BP 神经网络的地层划分方法。 首先针对三层 BP 神经网络模型,设计了改进的 L-M 算法以提升其逼近能力。 然后设计了基于 BP 神经网络的地层划分方法。 该方法精选了描述地层岩性类别的六个特征, 将这些特征进行数据滤波和归一化后构造训练样本,实施网络训练,训练后的网络即可用于同类地区的地层划分。 最后以辽河油田某区块的测井资料为基础数据进行地层划分, 实验结果表明,与普通 L-M 算法比较,基于改进 L-M 算法的 BP 神经网络,地层划分结果的准确率大约提升 3~5 个百分点。 因此,提出的基于改进 BP 神经网络的地层划分方法为测井曲线的自动划层提供了新思路。
Abstract:
Well logging curve stratification is the first basic work for geophysical exploration to understand the stratigraphic condition by using well logging data. In view of the problem of logging curves’ automatic stratification,a method of stratigraphic division based on improved BP neural network is proposed. Firstly,in the light of the three layer BP neural network model,the improved L-M algorithm is designed to improve its approximation. Then the method of stratigraphic division based on BP neural network is designed. In this method,six features describing the lithologic classification of strata are selected. After constructing training samples out of the filtered and normalized data,the training of the neural network that can be used for stratigraphic classification in similar areas is carried out. Finally,the stratigraphic division based on the logging data of a block in Liaohe Oilfield is carried out. The experiment shows that compared with the common L-M algorithm, the BP neural network based on the improved L-M algorithm improves the accuracy of stratigraphic division by about 3%~5% . Therefore,the proposed method provides a new idea for logging curves’ automatic stratification.

相似文献/References:

[1]尚福华[],柴艳领[],杜睿山[],等. 小波双线性插值算法在测井曲线相似中的应用[J].计算机技术与发展,2015,25(09):66.
 HANG Fu-hua[],CHAI Yan-ling[],DU Rui-shan[],et al. Application of Wavelet Bilinear Interpolation Algorithm in Well-logging Curve Similarity[J].,2015,25(09):66.
[2]柴艳领[],唐志涛[].Haar 小波变换在测井曲线相似性对比中的应用[J].计算机技术与发展,2016,26(01):119.
 CHAI Yan-ling[],TANG Zhi-tao[]. pplication of Haar Wavelet Transform in Well-logging Curve Similarity[J].,2016,26(09):119.
[3]冯向东,张玉琴,韩红伟,等.基于自组织神经网络在油气分层中的研究[J].计算机技术与发展,2021,31(02):44.[doi:10. 3969 / j. issn. 1673-629X. 2021. 02. 008]
 FENG Xiang-dong,ZHANG Yu-qin,HAN Hong-wei,et al.Research on Oil and Gas Stratification Based on Self-organizing Neural Network[J].,2021,31(09):44.[doi:10. 3969 / j. issn. 1673-629X. 2021. 02. 008]
[4]富 宇,李 滕,郭晓萍.基于支持向量机对优势渗流通道识别的研究[J].计算机技术与发展,2021,31(08):182.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 031]
 FU Yu,LI Teng,GUO Xiao-ping.Research on Identification of Dominant Seepage ChannelBased on Support Vector Machine[J].,2021,31(09):182.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 031]
[5]肖 红,张瑶瑶*,张福禄.改进的卷积神经网络及在地层识别中的应用[J].计算机技术与发展,2021,31(09):167.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 028]
 XIAO Hong,ZHANG Yao-yao*,ZHANG Fu-lu.Improved Convolution Neural Network and Its Application of Stratigraphic Identification[J].,2021,31(09):167.[doi:10. 3969 / j. issn. 1673-629X. 2021. 09. 028]
[6]张可佳,方佳佳,高楷程,等.基于神经网络的岩性物性参数计算方法研究[J].计算机技术与发展,2022,32(06):186.[doi:10. 3969 / j. issn. 1673-629X. 2022. 06. 031]
 ZHANG Ke-jia,FANG Jia-jia*,GAO Kai-cheng,et al.Study on Calculation Method of Lithologic Physical Property Parameters Based on Neural Network[J].,2022,32(09):186.[doi:10. 3969 / j. issn. 1673-629X. 2022. 06. 031]
[7]曹茂俊,崔欣锋.基于一维卷积神经网络的地层智能识别方法[J].计算机技术与发展,2023,33(09):133.[doi:10. 3969 / j. issn. 1673-629X. 2023. 09. 020]
 CAO Mao-jun,CUI Xin-feng.Intelligent Stratigraphic Recognition Method Based on 1DCNN[J].,2023,33(09):133.[doi:10. 3969 / j. issn. 1673-629X. 2023. 09. 020]
[8]杜睿山,李宏杰,孟令东.基于 CNN-BiLSTM-AM 的储层岩石脆性指数预测[J].计算机技术与发展,2023,33(10):28.[doi:10. 3969 / j. issn. 1673-629X. 2023. 10. 005]
 DU Rui-shan,LI Hong-jie,MENG Ling-dong.Prediction of Reservoir Rock Brittleness Index Based on CNN-BiLSTM-AM[J].,2023,33(09):28.[doi:10. 3969 / j. issn. 1673-629X. 2023. 10. 005]

更新日期/Last Update: 2020-09-10