[1]康嘉钰,苏凡军.基于生成对抗网络的长短兴趣推荐模型[J].计算机技术与发展,2020,30(06):35-39.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 007]
 KANG Jia-yu,SU Fan-jun.A Long-short-term Interests Recommendation Model Based on Generative Adversarial Networks[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(06):35-39.[doi:10. 3969 / j. issn. 1673-629X. 2020. 06. 007]
点击复制

基于生成对抗网络的长短兴趣推荐模型()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年06期
页码:
35-39
栏目:
智能、算法、系统工程
出版日期:
2020-06-10

文章信息/Info

Title:
A Long-short-term Interests Recommendation Model Based on Generative Adversarial Networks
文章编号:
1673-629X(2020)06-0035-05
作者:
康嘉钰苏凡军
上海理工大学 光电信息与计算机工程学院,上海 200093
Author(s):
KANG Jia-yuSU Fan-jun
School of Optical-electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
关键词:
推荐算法生成对抗网络循环神经网络孪生网络对比损失函数
Keywords:
recommendation algorithmgenerative adversarial networksrecurrent neural networksiamese networkcontrastive loss function
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 06. 007
摘要:
传统的推荐系统中,用户的兴趣被认为是稳定不变的,而事实上,用户的兴趣会因为各种因素产生变化。为了更加有利地跟踪用户兴趣偏好变化进行内容推荐,提出了一种基于生成对抗网络的推荐算法 L-GAN (long short-term memory via generative adversarial networks),利用长期和短期的兴趣偏好,通过生成对抗的训练策略来训练推荐模型,使推荐模型产生的推荐列表更加准确。在对抗训练过程中,将数据分为多个行为周期,按照时间顺序依次输入每个行为周期内的用户-项目评价矩阵,生成器模型产生推荐列表,而判断器模型则区分输入的推荐列表是否与真实历史记录的特征相似。最终,通过在两个公开的数据集上与多个推荐模型进行对比实验,结果表明在不同稀疏度的数据集上,L-GAN 算法在推荐精度方面有较明显的提高,更善于挖掘数据的隐层特征。
Abstract:
In the traditional recommendation system,users’ interests are considered to be stable and unchanged, but in fact, they will change due to various factors. In order to track the changes of users’ interests and preferences more advantageously for content recommendation,we propose a recomm-endation algorithm L-GAN based on generating antagonistic network,which takes advantage of long-term and short-term interest preference to train the recommendation model by generating antagonistic training strategies,so that the recommendation list generated by the recommendation model can be more accurate. In the course of confrontation training, the data is divided into several action cycles,and the user-project evaluation matrix is input in time sequence in each action cycle. The generator model generates the recommendation list,while the judge model distinguishes whether the input recommendation list is similar to the characteristics of the real history record. Finally,by comparing the two open datasets with several recommendation models,the experimental results show that the L-GAN algorithm improves the recommendation accuracy significantly in different sparse datasets and is better at mining hidden features of data.

相似文献/References:

[1]李克潮,蓝冬梅.一种属性和评分的协同过滤混合推荐算法[J].计算机技术与发展,2013,(07):116.
 LI Ke-chao,LAN Dong-mei.A Collaborative Filtering Hybrid Recommendation Algorithm for Attribute and Rating[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2013,(06):116.
[2]王全民,王莉,曹建奇. 基于评论挖掘的改进的协同过滤推荐算法[J].计算机技术与发展,2015,25(10):24.
 WANG Quan-min,WANG Li,CAO Jian-qi. Improved Collaborative Filtering Recommendation Algorithm Based on Comments Mining[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2015,25(06):24.
[3]李远博,曹菡. 基于PCA降维的协同过滤推荐算法[J].计算机技术与发展,2016,26(02):26.
 LI Yuan-bo,CAO Han. Collaborative Filtering Recommendation Algorithm Based on PCA Dimension Reduction[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2016,26(06):26.
[4]张春生[],图雅[],翁慧[],等. 基于电子商务同类商品的推荐算法研究[J].计算机技术与发展,2016,26(05):17.
 ZHANG Chun-sheng[],TU Ya[],WENG Hui[],et al. Research on Similar Products Recommendation Algorithm Based on Electronic Commerce[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2016,26(06):17.
[5]房旋[],陈升波[],宫婧[][],等. 基于社交影响力的推荐算法[J].计算机技术与发展,2016,26(06):31.
 FANG Xuan[],CHEN Sheng-bo[],GONG Jing[][],et al. A Recommendation Algorithm Based on Social Influence[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2016,26(06):31.
[6]蒋宗礼,王威,陆晨. 基于均值预估的协同过滤推荐算法改进[J].计算机技术与发展,2017,27(05):1.
 JIANG Zong-li,WANG Wei,LU Chen. 基于均值预估的协同过滤推荐算法改进[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2017,27(06):1.
[7]许德心,李玲娟.基于 Spark 的关联规则挖掘算法并行化研究[J].计算机技术与发展,2019,29(03):30.[doi:10.3969/ j. issn.1673-629X.2019.03.006]
 XU De-xin,LI Ling-juan.Research on Parallelization of Association Rules Mining Algorithm Based on Spark[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2019,29(06):30.[doi:10.3969/ j. issn.1673-629X.2019.03.006]
[8]史 伟,张青云,李 帅.基于 LBS 的停车位共享平台设计[J].计算机技术与发展,2019,29(11):149.[doi:10. 3969 / j. issn. 1673-629X. 2019. 11. 030]
 SHI Wei,ZHANG Qing-yun,LI Shuai.Design of Sharing Platform for Parking Spaces Based on LBS[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2019,29(06):149.[doi:10. 3969 / j. issn. 1673-629X. 2019. 11. 030]
[9]蒋文杰,罗晓曙*,戴沁璇.一种改进的生成对抗网络的图像上色方法研究[J].计算机技术与发展,2020,30(07):56.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 013]
 JIANG Wen-jie,LUO Xiao-shu*,DAI Qin-xuan.Research on an Improved Method of Generative Adversarial Networks Image Coloring[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(06):56.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 013]
[10]刘 旭,李玲娟.基于项目聚类和时间衰减的动态协同过滤算法[J].计算机技术与发展,2020,30(08):22.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 004]
 LIU Xu,LI Ling-juan.Dynamic Collaborative Filtering Algorithm Based on Item Clustering and Time Decay[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(06):22.[doi:10. 3969 / j. issn. 1673-629X. 2020. 08. 004]

更新日期/Last Update: 2020-06-10