[1]李江龙,鲍义东,陈 果.基于视觉显著性的农作物图像评价方法研究[J].计算机技术与发展,2020,30(04):211-215.[doi:10. 3969 / j. issn. 1673-629X. 2020. 04. 040]
 LI Jiang-long,BAO Yi-dong,CHEN Guo.Study on Crop Image Evaluation Methods Based on Visual Saliency[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(04):211-215.[doi:10. 3969 / j. issn. 1673-629X. 2020. 04. 040]
点击复制

基于视觉显著性的农作物图像评价方法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年04期
页码:
211-215
栏目:
应用开发研究
出版日期:
2020-04-10

文章信息/Info

Title:
Study on Crop Image Evaluation Methods Based on Visual Saliency
文章编号:
1673-629X(2020)04--0211-05
作者:
李江龙鲍义东陈 果
贵州航天智慧农业有限公司,贵州 贵阳 550081
Author(s):
LI Jiang-longBAO Yi-dongCHEN Guo
Guizhou Aerospace Intelligent Agriculture Co.,Ltd.,Guiyang 550081,China
关键词:
农业信息化数字图像处理视觉显著性半参考质量评价
Keywords:
agricultural informatizationdigital image processingvisual saliencysemi-reference quality evaluation
分类号:
TP301
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 04. 040
摘要:
近年来,随着电子信息技术、计算机可视化技术和互联网技术的迅速发展,传统的农业管理方式正逐渐被新型的农业信息化管理方法所替代。 当前,基于数字图像处理技术的智慧农业已经成为新型农业信息化中的关键研究领域。 具体来说,利用数字平台获取的农作物图像可以为专家提供非常丰富的信息,比如,农作物的长势,农作物病虫害情况等。 但是,值得注意的是,获取这些有价值信息的前提是数字平台拍摄的农作物图像具有足够的清晰度,即没有出现严重失真。 基于此,以农作物图像的质量为研究对象,提出了一种基于视觉显著性的半参考质量评价方法,在梯度域提取了方向直方图特征来刻画图像质量的变化。 实验结果表明,该方法能够很好地识别农作物的图像质量,保证了后续高层次信息 提取的有效性。
Abstract:
Along with the rapid development of electronic information technology,computer visualization technology and Internet technology,the traditional mode of agricultural management is gradually replaced by a new type of agricultural information. At present, intelligent agriculture based on digital image processing technology has become a key research field in the new agricultural informatization. In particular,crop images obtained from digital platforms can provide experts with a wealth of information,such as the growth trend of crops,crop diseases and insect pests. However,it is important to note that these valuable information is the premise of digital platform of crop the image clear enough,namely no serious distortion. Therefore,taking the quality of crop images as the research object,we propose a semi-reference quality evaluation method based on visual saliency. The direction histogram features from the gradient domain are extracted to describe the change of image quality. The experiment shows that the proposed method can well identify the quality of crop images and ensure the follow-up.

相似文献/References:

[1]刘萌萌.基于无标度摄像机的车流跟踪与速度估计算法[J].计算机技术与发展,2008,(06):111.
 LIU Meng-meng.Algorithm on Vehicle Tracking and Speed Estimating Based on Non- Calibrated Camera[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2008,(04):111.
[2]刘学练 张航 熊富强.TMS320在交通流视频检测中的应用[J].计算机技术与发展,2008,(12):200.
 LIU Xue-lian,ZHANG Hang,XIONG Fu-qiang.Traffic Flow Video Detection Achievement Based on TMS320DSP[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2008,(04):200.
[3]马飞 吕海莲 杨帅 程荣花.基于图像处理的客观题自动阅卷系统研究开发[J].计算机技术与发展,2012,(07):242.
 MA Fei,LU Hai-lian,YANG Shuai,et al.Research of Objective Examination Paper System Automatically Marking Based on Image Processing[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2012,(04):242.
[4]肖鹏,闫建国,赵元伟.基于图像处理的堆积物计数方法研究[J].计算机技术与发展,2013,(09):182.
 XIAO Peng,YAN Jian-guo,ZHAO Yuan-wei.Research on Counting Methods of Deposits Based on DSP[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2013,(04):182.
[5]王英强,张卫钢,王红刚.基于 NB-IoT 的农业数据采集系统的设计[J].计算机技术与发展,2020,30(02):206.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 040]
 WANG Ying-qiang,ZHANG Wei-gang,WANG Hong-gang.Design of Agricultural Data Acquisition System Based on NB-IoT[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(04):206.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 040]
[6]孙鹏崴,王 俊,王树军,等.基于 MATLAB GUI 的图像处理系统的设计[J].计算机技术与发展,2022,32(04):215.[doi:10. 3969 / j. issn. 1673-629X. 2022. 04. 037]
 SUN Peng-wei,WANG Jun,WANG Shu-jun,et al.Design of Image Processing System Based on MATLAB GUI[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2022,32(04):215.[doi:10. 3969 / j. issn. 1673-629X. 2022. 04. 037]
[7]张一鸣,杨曦晨.基于特征融合的雾化图像质量评价方法[J].计算机技术与发展,2022,32(11):72.[doi:10. 3969 / j. issn. 1673-629X. 2022. 11. 011]
 ZHANG Yi-ming,YANG Xi-chen.Hazy Image Quality Assessment Based on Multi-feature Fusion[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2022,32(04):72.[doi:10. 3969 / j. issn. 1673-629X. 2022. 11. 011]

更新日期/Last Update: 2020-04-10