[1]宋祖康,阎瑞霞.基于 CNN-BIGRU 的中文文本情感分类模型[J].计算机技术与发展,2020,30(02):166-170.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 032]
 SONG Zu-kang,YAN Rui-xia.Chinese Comment Sentiment Classification Model Based on CNN-BIGRU[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(02):166-170.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 032]
点击复制

基于 CNN-BIGRU 的中文文本情感分类模型()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年02期
页码:
166-170
栏目:
应用开发研究
出版日期:
2020-02-10

文章信息/Info

Title:
Chinese Comment Sentiment Classification Model Based on CNN-BIGRU
文章编号:
1673-629X(2020)02-0166-05
作者:
宋祖康阎瑞霞
上海工程技术大学 管理学院,上海 201620
Author(s):
SONG Zu-kangYAN Rui-xia
School of Management,Shanghai University of Engineering Science,Shanghai 201620,China
关键词:
卷积神经网络循环神经网络文本分析情感分类
Keywords:
convolutional neural networkrecurrent neural networktext analysissentiment classification
分类号:
TP183
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 02. 032
摘要:
在当今商业领域,对网络评论的情感分类一直是一个比较热门的研究方向,而为了克服传统机器学习方法所构建 分类器会产生较大计算开销,精度表现较差的缺点,提出一种基于深度学习模型中卷积神经网络(CNN)与循环神经网络 (RNN)模型的情感分类方法。 在以往的研究中,卷积神经网络往往被用来提取文本的局部特征信息,但却容易忽视文本的长距离特征,而RNN则往往被用来提取句子的长距离依赖信息,但容易陷入梯度爆炸问题。 因此,结合卷积神经网络对 于局部特征信息的良好提取能力与循环神经网络对于长距离依赖信息的记忆能力,构建了一个CNN-BIGRU混合模型,用 以提取文本的局部特征以及文本的长距离特征。 其中循环神经网络模型使用了双向GRU模型,以避免RNN模型的梯度 爆炸与梯度消失问题。 在谭松波的酒店评论数据集上的实验结果表明,利用该模型,实验分类的准确率比单独使用卷积 神经网络模型最高提升了26.3%,比单独使用循环神经网络模型最高提升了7.9%,从而提高了对中文文本情感分类的精 度,并减少了计算开销。
Abstract:
In today’s business field,the sentiment classification of online comments has always been a hot research direction. In order to overcome the shortcomings of the classifier constructed by the traditional machine learning method,such as large computational overhead and poor accuracy,a sentiment classification method based on the convolutional neural network (CNN) and recurrent neural network (RNN) in the deep learning model is proposed. In previous studies,CNN is often used to extract the local feature information of the text,but it is easy to ignore the long-distance feature of the text,while RNN is often used to extract the long-distance dependent information of the sentence,but it is easy to fall into the gradient explosion. Therefore,combining the great local feature information extraction of CNN and the memory of RNN to long-distance dependent information,we construct a CNN-BIGRU hybrid model to extract local feature and long-distance feature of text. Atwo-way GRU model isused in RNN model to avoid thegradient explosion and gradient disappearance of the RNN model. The experiment on Tan Songbo’ hotel reviews data set shows that the classification accuracy of the proposed model is the highest by 26.3% compared with the CNN alone,and thehighest by 7.9% compared with RNN alone,so as to improve the accuracy of the affection of Chinese text classification and reduce the computational overhead.

相似文献/References:

[1]崔凤焦.表情识别算法研究进展与性能比较[J].计算机技术与发展,2018,28(02):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
 CUI Feng-jiao.Research and Performance Comparison of Facial Expression Recognition Algorithm[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2018,28(02):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
[2]张丹丹,李雷. 基于PCANet-RF的人脸检测系统[J].计算机技术与发展,2016,26(02):31.
 ZHANG Dan-dan,LI Lei. Face Detection System Based on PCANet-RF[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2016,26(02):31.
[3]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2018,28(02):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[4]郭子琰,舒心,刘常燕,等.基于ReLU 函数的卷积神经网络的花卉识别算法[J].计算机技术与发展,2018,28(05):154.[doi:10.3969/j.issn.1673-629X.2018.05.035]
 GUO Ziyan,SHU Xin,LIU Changyan,et al.A Recognition Algorithm of Flower Based on Convolution Neural Network with ReLU Function[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2018,28(02):154.[doi:10.3969/j.issn.1673-629X.2018.05.035]
[5]缪宇杰,吴智钧,宫 婧.基于3D 卷积的视频错帧筛选方法[J].计算机技术与发展,2018,28(05):179.[doi:10.3969/ j. issn.1673-629X.2018.05.040]
 MIAO Yu-jie,WU Zhi-jun,GONG Jing.A Wrong Temporal-order Frames Identification Method Based on 3D Convolution[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2018,28(02):179.[doi:10.3969/ j. issn.1673-629X.2018.05.040]
[6]吴玉枝,吴志红,熊运余.基于卷积神经网络的小样本车辆检测与识别[J].计算机技术与发展,2018,28(06):1.[doi:10.3969/ j. issn.1673-629X.2018.06.001]
 WU Yu-zhi,WU Zhi-hong,XIONG Yun-yu.Vehicle Detection and Recognition of a Few Samples Based on Convolutional Neural Network[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2018,28(02):1.[doi:10.3969/ j. issn.1673-629X.2018.06.001]
[7]李相桥,李晨,田丽华,等.卷积神经网络并行训练的优化研究[J].计算机技术与发展,2018,28(08):12.[doi:10.3969/ j. issn.1673-629X.2018.08.003]
 LI Xiang-qiao,LI Chen,TIAN Li-hua,et al.Research on Optimization of Parallel Training for Convolution Neural Network[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2018,28(02):12.[doi:10.3969/ j. issn.1673-629X.2018.08.003]
[8]邓宗平,赵启军,陈虎. 基于深度学习的人脸姿态分类方法[J].计算机技术与发展,2016,26(07):11.
 DEND Zong-ping,ZHAO Qi-jun,CHEN Hu. Face Pose Classification Method Based on Deep Learning[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2016,26(02):11.
[9]河海大学 计算机与信息学院,江苏 南京 0098.卷积网络的无监督特征提取对人脸识别的研究[J].计算机技术与发展,2018,28(06):17.[doi:10.3969/ j. issn.1673-629X.2018.06.004]
 DU Bai-sheng.Research on Unsupervised Feature Extraction Based on Convolutional Neural Network for Face Recognition[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2018,28(02):17.[doi:10.3969/ j. issn.1673-629X.2018.06.004]
[10]高翔,陈志,岳文静,等.基于视频场景深度学习的人物语义识别模型[J].计算机技术与发展,2018,28(06):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
 GAO Xiang,CHEN Zhi,YUE Wen-jing,et al.Human Semantic Recognition Model Based on Video Scene Deep Learning[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2018,28(02):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
[11]产世兵,刘宁钟,沈家全.一种轻量级的不规则场景文本识别模型[J].计算机技术与发展,2020,30(11):20.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 004]
 CHAN Shi-bing,LIU Ning-zhong,SHEN Jia-quan.A Lightweight Model for Irregular Scene Text Recognition[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(02):20.[doi:10. 3969 / j. issn. 1673-629X. 2020. 11. 004]
[12]蒋子敏,刘宁钟,沈家全.基于轻量级网络的 PCB 芯片文字识别[J].计算机技术与发展,2021,31(12):55.[doi:10. 3969 / j. issn. 1673-629X. 2021. 12. 010]
 JIANG Zi-min,LIU Ning-zhong,SHEN Jia-quan.PCB Chip Text Recognition Based on Lightweight Network[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2021,31(02):55.[doi:10. 3969 / j. issn. 1673-629X. 2021. 12. 010]

更新日期/Last Update: 2020-02-10