[1]李晓峰,李 东.基于深度学习的高维稀疏数据组合推荐算法[J].计算机技术与发展,2020,30(02):104-108.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 021]
 LI Xiao-feng,LI Dong.A High-dimensional Sparse Data Combination Recommendation Algorithm Based on Deep Learning[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(02):104-108.[doi:10. 3969 / j. issn. 1673-629X. 2020. 02. 021]
点击复制

基于深度学习的高维稀疏数据组合推荐算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年02期
页码:
104-108
栏目:
智能、算法、系统工程
出版日期:
2020-02-10

文章信息/Info

Title:
A High-dimensional Sparse Data Combination Recommendation Algorithm Based on Deep Learning
文章编号:
1673-629X(2020)02-0104-05
作者:
李晓峰1李 东2
1. 黑龙江外国语学院 信息工程系,黑龙江 哈尔滨 150025; 2. 哈尔滨工业大学 计算机科学与技术学院,黑龙江 哈尔滨 150001
Author(s):
LI Xiao-feng1LI Dong2
1.Department of Information Engineering,Heilongjiang International University,Harbin 150025,China; 2.School of Computer Science and Technology,Harbin Institute of Technology,Harbin 150001,China
关键词:
深度学习高维稀疏数据组合推荐特征提取挖掘
Keywords:
deep learninghigh dimensional sparse datacombination recommendationfeature extractionmining
分类号:
TP391
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 02. 021
摘要:
传统方法在对高维稀疏数据进行检测的过程中,受到高维特征扰动的影响,数据误差较大,因此提出一种基于深 度学习的高维稀疏数据组合推荐算法。 采用相空间重构方法进行高维稀疏数据的特征重构,根据重构结果结合非线性统 计序列分析方法进行高维稀疏数据的回归分析和点云结构重组,在此基础上提取高维稀疏数据的组合特征量;依据特征 量提取结果采用特征提取技术抽取高维稀疏数据的平均互信息特征量,并结合关联规则挖掘方法进行高维稀疏数据的主 成分分析,挖掘高维稀疏数据的相似度属性类别成分,最终采用深度学习方法进行高维稀疏数据组合推荐过程中的自适 应寻优,实现高维稀疏数据的组合推荐。 仿真结果表明,采用该算法进行高维稀疏数据推荐的属性归类辨识性较好,特征分辨能力较强,提高了数据的检测和识别能力。
Abstract:
In the process of detecting high-dimensional sparse data,the traditional methods are affected by high-dimensional feature perturbation,and the data error is large. Therefore,a high-dimensional sparse data combination recommendation algorithm based on deep learning is proposed. The phase space reconstruction method is used to reconstruct the features of high-dimensional sparse data. Based on the reconstructed results and the non-linear statistical sequence analysis method,the regression analysis of high-dimensional sparse data and the reorganization of point cloud structure are carried out. On this basis,the combined features of high-dimensional sparse data are extracted. According to the results of feature extraction,the average mutual information features of high-dimensional sparse data are extracted by feature extraction technology. Quantity,principal component analysis of high-dimensional sparse data is combined with association rule mining method,and similarity attribute category components of high-dimensional sparse data are mined. Finally,deep learning method is used for self-adaptive optimization in the process of high-dimensional sparse data combination recommendation, which realizes the combination recommendation of high-dimensional sparse data. The simulation shows that the proposed method has better recognition ability for attribute classification and feature resolution of high-dimensional sparse data recommendation,and improves the detection and recognition ability of data.

相似文献/References:

[1]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2018,28(02):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[2]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
 SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2018,28(02):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
[3]黄法秀,张世杰,吴志红,等.数据增广下的人脸识别研究[J].计算机技术与发展,2020,30(03):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
 HUANG Fa-xiu,ZHANG Shi-jie,WU Zhi-hong,et al.Research on Face Recognition Based on Data Augmentation[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(02):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
[4]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
 CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2016,26(02):19.
[5]高翔,陈志,岳文静,等.基于视频场景深度学习的人物语义识别模型[J].计算机技术与发展,2018,28(06):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
 GAO Xiang,CHEN Zhi,YUE Wen-jing,et al.Human Semantic Recognition Model Based on Video Scene Deep Learning[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2018,28(02):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
[6]贺飞翔,赵启军. 基于深度学习的头部姿态估计[J].计算机技术与发展,2016,26(11):1.
 HE Fei-xiang,ZHAO Qi-jun. Head Pose Estimation Based on Deep Learning[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2016,26(02):1.
[7]徐 融,邱晓晖.一种改进的 YOLO V3 目标检测方法[J].计算机技术与发展,2020,30(07):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
 XU Rong,QIU Xiao-hui.An Improved YOLO V3 Object Detection[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2020,30(02):30.[doi:10. 3969 / j. issn. 1673-629X. 2020. 07. 007]
[8]曾志平[] [],萧海东[],张新鹏[]. 基于DBN的金融时序数据建模与决策[J].计算机技术与发展,2017,27(04):1.
 ZENG Zhi-ping[] [],XIAO Hai-dong[],ZHANG Xin-peng[]. Modeling and Decision-making of Financial Time Series Data with DBN[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2017,27(02):1.
[9]李全兵,文 钊*,田艳梅*,等.基于 WGAN 的音频关键词识别研究[J].计算机技术与发展,2021,31(08):26.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 005]
 LI Quan-bing,WEN Zhao *,TIAN Yan-mei *,et al.Research on Audio Keywords Recognition Based on WassersteinGenerative Adversarial Network[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2021,31(02):26.[doi:10. 3969 / j. issn. 1673-629X. 2021. 08. 005]
[10]李宏林. 分析式纹理合成技术及其在深度学习的应用[J].计算机技术与发展,2017,27(11):7.
 LI Hong-lin. Analyzed Texture-synthesis Techniques and Their Applications in Deep Learning[J].COMPUTER TECHNOLOGY AND DEVELOPMENT,2017,27(02):7.

更新日期/Last Update: 2020-02-10