[1]郭林斐,刘广钟.基于 Neo4j 不确定性数据处理技术的研究[J].计算机技术与发展,2020,30(01):25-31.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 005]
 GUO Lin-fei,LIU Guang-zhong.Research on Uncertain Data Processing Technology Based on Neo4j Graph Database[J].Computer Technology and Development,2020,30(01):25-31.[doi:10. 3969 / j. issn. 1673-629X. 2020. 01. 005]
点击复制

基于 Neo4j 不确定性数据处理技术的研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
30
期数:
2020年01期
页码:
25-31
栏目:
智能、算法、系统工程
出版日期:
2020-01-10

文章信息/Info

Title:
Research on Uncertain Data Processing Technology Based on Neo4j Graph Database
文章编号:
1673-629X(2020)01-0025-07
作者:
郭林斐刘广钟
上海海事大学 信息工程学院,上海 201306
Author(s):
GUO Lin-feiLIU Guang-zhong
School of Information Engineering,Shanghai Maritime University,Shanghai 201306,China
关键词:
数字人文学不确定性属性图Neo4j双时态模型
Keywords:
digital humanitiesuncertaintyproperty graphsNeo4jbi-temporal model
分类号:
TP31
DOI:
10. 3969 / j. issn. 1673-629X. 2020. 01. 005
摘要:
不确定性是数据的本质特征,对不确定性数据的研究得到了越来越多领域的关注。在总结当前处理历史数据不确定性方法的基础上,针对缺乏处理不确定性历史数据的语义框架问题,基于 Neo4j 图数据库建立用于处理不确定性历史数据的通用数学模型。该模型以双时态模型、概率模型等为依托,整合了历史数据的时间、不确定性与世系三个方面。并基于 Python 语言实现了具有 CRUD 基本操作的存储系统,可动态增加节点之间的关系、存储和检索历史数据、实现了不确定性数据的筛选查询和模糊查询。 通过关系型数据库与图数据库中数据的存储方式及存储系统的查询效率对比实验表明,所提出的数学模型扩展性更强,实现系统查询效率更高,在处理大规模不确定性数据的存储和检索方面优势更加明显。
Abstract:
Uncertainty is the essential feature of data, and researches on uncertainty data has been paid more and more attention. On the basis of summarizing the current methods of processing uncertain historical data,in order to address the problem of the lack of a semantic framework for processing uncertain historical data,based on the Neo4j graph database, we establish a general mathematical model. The model integrates the time,uncertainty and provenance of historical data based on the bi-temporal model and probabilistic model. The storage system with basic operations of CRUD is implemented in Python which can dynamically increase the relationship between nodes, store and retrieve historical data,and implement filtering queries and fuzzy queries for uncertain data. The comparison between the relational database and the graph database in the storage method of data and the query efficiency of the storage system shows that the proposed mathematical model based on graph database is better in extensibility and the storage system is more efficient in querying,and the advantages are more obvious in dealing with large-scale uncertainty data for storing and retrieving historical data.

相似文献/References:

[1]宫义山 高媛媛.基于信息融合的诊断贝叶斯网络研究[J].计算机技术与发展,2009,(06):106.
 GONG Yi-shan,GAO Yuan-yuan.Diagnostic Bayesian Networks Research Based on Information Fusion[J].Computer Technology and Development,2009,(01):106.
[2]王军豪 彭岩.基于主观贝叶斯的点击流数据分析应用研究[J].计算机技术与发展,2008,(07):116.
 WANG Jun-hao,PENG Yan.Application and Research of Clickstream Data Analysis Based on Bayes[J].Computer Technology and Development,2008,(01):116.
[3]张家精 王焕宝 陈金兰 倪友聪.基于云模型的隶属概念判定算法的改进[J].计算机技术与发展,2007,(10):65.
 ZHANG Jia-jing,WANG Huan-bao,CHEN Jin-lan,et al.An Improved Algorithm for Determining Membership Conception Based on Cloud Mode[J].Computer Technology and Development,2007,(01):65.
[4]许兰 朱巧明 贡正仙 朱剑非.动态服务组合中资源选择的研究与实现[J].计算机技术与发展,2007,(12):221.
 XU Lan,ZHU Qiao-ming,GONG Zheng-xian,et al.Design and Implementation of a Resource Selection in Dynamic Service Composition[J].Computer Technology and Development,2007,(01):221.
[5]王思鹏.基于云模型的识别技术[J].计算机技术与发展,2006,(06):187.
 WANG Si-peng.Detecting Technology Based on Cloud Model[J].Computer Technology and Development,2006,(01):187.
[6]向俊 王静.GIS矢量数据的拓扑空间模糊划分模型[J].计算机技术与发展,2012,(09):146.
 XIANG Jun,WANG Jing.Fuzzy Division of Topological Space of GIS Vector Data[J].Computer Technology and Development,2012,(01):146.
[7]张松云,高国琴.不确定性输送用混联机器人滑模控制研究[J].计算机技术与发展,2020,30(12):66.[doi:10. 3969 / j. issn. 1673-629X. 2020. 12. 012]
 ZHANG Song-yun,GAO Guo-qin.Research on Sliding Mode Control of an Uncertain Hybrid Robot for Conveying[J].Computer Technology and Development,2020,30(01):66.[doi:10. 3969 / j. issn. 1673-629X. 2020. 12. 012]
[8]戴 丹,管有庆,龚 锐.基于不确定性推理的活动识别方法研究[J].计算机技术与发展,2022,32(01):7.[doi:10. 3969 / j. issn. 1673-629X. 2022. 01. 002]
 DAI Dan,GUAN You-qing,GONG Rui.Activity Recognition Method Based on Uncertainty Reasoning[J].Computer Technology and Development,2022,32(01):7.[doi:10. 3969 / j. issn. 1673-629X. 2022. 01. 002]
[9]关新宇,孙 涵.基于不确定性加权混合训练的无源域自适应[J].计算机技术与发展,2023,33(11):135.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 020]
 GUAN Xin-yu,SUN Han.Uncertainty-guided Weighted Hybrid Training Based Source-free Domain Adaptation[J].Computer Technology and Development,2023,33(01):135.[doi:10. 3969 / j. issn. 1673-629X. 2023. 11. 020]

更新日期/Last Update: 2020-01-10