[1]刘文英,张自鲁,路慎强,等.基于粒子群-遗传混合算法的函数优化研究[J].计算机技术与发展,2019,29(10):170-174.[doi:10. 3969 / j. issn. 1673-629X. 2019. 10. 033]
 LIU Wen-ying,ZHANG Zi-lu,LU Shen-qiang,et al.Research on Function Optimization Based on Particle Swarm-Genetic Hybrid Algorithm[J].,2019,29(10):170-174.[doi:10. 3969 / j. issn. 1673-629X. 2019. 10. 033]
点击复制

基于粒子群-遗传混合算法的函数优化研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年10期
页码:
170-174
栏目:
智能、算法、系统工程
出版日期:
2019-10-10

文章信息/Info

Title:
Research on Function Optimization Based on Particle Swarm-Genetic Hybrid Algorithm
文章编号:
1673-629X(2019)10-0170-05
作者:
刘文英1 张自鲁1 路慎强2 张晓燕1
1. 中国石油大学(华东) 计算机与通信工程学院,山东 青岛 266580; 2. 中国石化胜利油田分公司物探研究院,山东 东营 257000
Author(s):
LIU Wen-ying 1 ZHANG Zi-lu 1 LU Shen-qiang 2 ZHANG Xiao-yan 1
1. School of Computer and Communication Engineering,China University of Petroleum,Qingdao 266580,China; 2. Geophysical Research Institute of Sinopec Shengli Oilfield Company,Dongying 257000,China
关键词:
粒子群算法遗传算法混合算法小生境函数优化
Keywords:
particle swarm optimizationgenetic algorithmhybrid algorithmnichefunction optimization
分类号:
TP312
DOI:
10. 3969 / j. issn. 1673-629X. 2019. 10. 033
摘要:
基于传统粒子群优化算法(PSO)和遗传算法(GA),提出了一种混合算法(hybrid particle swarm optimization and genetic algorithm,h-PSO-GA)。 该算法借鉴小生境的思想,将种群划分为不同的子种群,并设计一种个体评价策略,防止非最优个体被过早淘汰,增加非最优个体被选择的几率,保持种群的多样性;引入相似度概念,依据不同个体进行不同交叉操作,产生更优的个体;将遗传算法中的变异操作引入粒子群算法的个体更新中,使算法的速度更新方式兼具本身的速度算子和遗传算法的变异操作,使该混合算法兼具遗传算法的全局搜索能力和粒子群算法的局部搜索优势。 将其应用到函数优化中,通过对 5 个测试函数进行实验验证,结果表明,该混合算法较之传统的遗传算法与粒子群算法具有较快的收敛性和全局最优性。
Abstract:
Based on particle swarm optimization and genetic algorithm,we propose a hybrid algorithm (h-PSO-GA). On the basis of the idea of niche,the algorithm divides the population into different sub-populations. An individual evaluation strategy is designed to prevent pre-existing individuals from being eliminated prematurely,increase the probability of non-optimal individuals being selected, and maintain the population diversity. The concept of similarity is introduced,and different crossover operations are carried out according to different individuals to produce better individuals. The mutation operation in the genetic algorithm is introduced into the individual update of the particle swarm optimization,so that the speed update of the particle swarm optimization has its own velocity operator and the mutation operation of the genetic algorithm,and the velocity operator in the particle swarm optimization algorithm is used instead of the mutation calculation. The hybrid algorithm combines the global search ability of the genetic algorithm with the local search advantage of the particle swarm algorithm. The results of five test functions show that combined with the GA and PSO,the hybrid algorithm has quick convergence rate and better global performance on function optimization.

相似文献/References:

[1]冯智明,苏一丹,覃华,等.基于遗传算法的聚类与协同过滤组合推荐算法[J].计算机技术与发展,2014,24(01):35.
 FENG Zhi-ming,SU Yi-dan,QIN Hua,et al.Recommendation Algorithm of Combining Clustering with Collaborative Filtering Based on Genetic Algorithm[J].,2014,24(10):35.
[2]余晓光 严洪森 殷乾坤.基于Flexsim的车间调度优化[J].计算机技术与发展,2010,(03):44.
 YU Xiao-guang,YAN Hong-sen,YIN Qian-kun.Workshops Scheduling Optimization Based on Flexsim Simulation[J].,2010,(10):44.
[3]贺计文 宋承祥 刘弘.基于遗传算法的八数码问题的设计及实现[J].计算机技术与发展,2010,(03):105.
 HE Ji-wen,SONG Cheng-xiang,LIU Hong.Design and Implementation of Eight Puzzle Problem Based on Genetic Algorithms[J].,2010,(10):105.
[4]沈珏萍 庄亚明.基于Agent的二级供应链企业自动谈判研究[J].计算机技术与发展,2010,(03):121.
 SHEN Jue-ping,ZHUANG Ya-ming.A Research for Company Automatic Negotiation in Secondary Supply Chain Based on Agent[J].,2010,(10):121.
[5]张磊 王晓军.基于遗传算法的业务流程测试[J].计算机技术与发展,2010,(03):155.
 ZHANG Lei,WANG Xiao-jun.Test of Business Process Based on Genetic Algorithm[J].,2010,(10):155.
[6]张爱华 江中勤 张华.基于粒子群优化算法的分形图像压缩编码[J].计算机技术与发展,2010,(02):21.
 ZHANG Ai-hua,JIANG Zhong-qin,ZHANG Hua.Fractal Image Compression Coding Based on PSO[J].,2010,(10):21.
[7]曹道友 程家兴.基于改进的选择算子和交叉算子的遗传算法[J].计算机技术与发展,2010,(02):44.
 CAO Dao-you,CHENG Jia-xing.A Genetic Algorithm Based on Modified Selection Operator and Crossover Operator[J].,2010,(10):44.
[8]范维博 周俊 许正良.应用遗传算法求解第一类装配线平衡问题[J].计算机技术与发展,2010,(02):194.
 FAN Wei-bo,ZHOU Jun,XU Zheng-liang.Appication of Genetic Algorithm to Assembly Line Balancing[J].,2010,(10):194.
[9]唐俊.PSO算法原理及应用[J].计算机技术与发展,2010,(02):213.
 TANG Jun.Principle and Application of PSO Algorithm[J].,2010,(10):213.
[10]熊伟平 曾碧卿.几种仿生优化算法的比较研究[J].计算机技术与发展,2010,(03):9.
 XIONG Wei-ping,ZENG Bi-qing.Studies on Some Bionic Optimization Algorithms[J].,2010,(10):9.
[11]邓伟林 胡桂武.一种求解离散优化问题的粒子群算法[J].计算机技术与发展,2012,(05):116.
 DENG Wei-lin,HU Gui-wu.A Particle Swarm Algorithm for Discrete Optimization Problem[J].,2012,(10):116.
[12]楼巍 刘捷 严利民.协同进化算法在关联规则挖掘中的应用[J].计算机技术与发展,2012,(11):13.
 LOU Wei,LIU Jie,YAN Li-min.Applied Research on Association Rules Mining with Co-evolution Algorithm[J].,2012,(10):13.
[13]杨思燕[],陈为胜[]. 基于数据同化的图像融合方法研究[J].计算机技术与发展,2014,24(11):69.
 YANG Si-yan[],CHEN Wei-sheng[]. Research on Image Fusion Method Based on Data Assimilation[J].,2014,24(10):69.
[14]刘春燕[],杨巍巍[]. 云计算基于遗传粒子群算法的多目标任务调度[J].计算机技术与发展,2017,27(02):56.
 LIU Chun-yan[],YANG Wei-wei[]. A Multi-objective Task Scheduling Based on Genetic and Particle Swarm Optimization Algorithm for Cloud Computing[J].,2017,27(10):56.
[15]梅朵[],郑黎黎[],刘春晓[],等. 基于混合算法优化SVM的短时交通流预测[J].计算机技术与发展,2017,27(11):92.
 MEI Duo[],ZHENG Li-li[],LIU Chun-xiao[],et al. A Short-term Traffic Flow Prediction Model Based on Support Vector Machine Optimized by Hybrid Algorithm[J].,2017,27(10):92.
[16]廖林峰,邱晓晖.基于模糊 C-均值聚类医学图像分割的优化算法[J].计算机技术与发展,2017,27(12):81.[doi:10.3969/ j. issn.1673-629X.2017.12.018]
 LIAO Lin-feng,QIU Xiao-hui.An Optimal Algorithm for Medical Image Segmentation Based on Fuzzy C-Means Clustering[J].,2017,27(10):81.[doi:10.3969/ j. issn.1673-629X.2017.12.018]

更新日期/Last Update: 2019-10-10