[1]毛建景,张君君.基于粒度商空间下的话题识别与跟踪研究[J].计算机技术与发展,2019,29(07):190-193.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 038]
 MAO Jian-jing,ZHANG Jun-jun.Research on Topic Recognition and Tracking Based on Granular Quotient Space[J].,2019,29(07):190-193.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 038]
点击复制

基于粒度商空间下的话题识别与跟踪研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年07期
页码:
190-193
栏目:
应用开发研究
出版日期:
2019-07-10

文章信息/Info

Title:
Research on Topic Recognition and Tracking Based on Granular Quotient Space
文章编号:
1673-629X(2019)07-0190-04
作者:
毛建景张君君
郑州工业应用技术学院 信息工程学院,河南 郑州 451150
Author(s):
MAO Jian-jingZHANG Jun-jun
School of Information Technology,Zhengzhou University of Industrial Technology,Zhengzhou 451150,China
关键词:
相容商空间粒度话题识别舆情
Keywords:
compatible quotient spacegranularitytopic identificationpublic opinion
分类号:
TP39
DOI:
10. 3969 / j. issn. 1673-629X. 2019. 07. 038
摘要:
文中旨在对自然语言所形成的信息流进行话题识别与跟踪,其目的主要针对网络舆论中出现的新话题进行识别, 并实现对已有话题的跟踪研究。 基于相容商空间粒度下软聚类算法,实现对话题的识别与跟踪,是舆情分析的关键技术。话题识别与跟踪采用软聚类算法,根据相容关系原理,计算距离函数,使话题呈现一定的层次结构,再利用相容隶属函数实现对边界文本的话题确认,形成注明标注信息的语料。 同时,结合基于 Ontology 情感分类法,计算与情感词汇中的语义相似度,统计目标情感词汇的倾向性权重,建立基于粒度商空间下的话题识别与跟踪模型,有效地促进话题倾向性的研究,最终实现对网络舆情话题的识别与跟踪,为相关部门监管网络舆情、掌握舆论方向提供指导。
Abstract:
This topic aims to identify and track the information flow formed by natural language. Its purpose is to identify the new topics in the network public opinion and to realize the tracking research of the existing topics. The soft clustering algorithm based on compatible quotient space granularity realizes the recognition and tracking of topics,which is the key technology of public opinion analysis. The topic identification and tracking adopts the soft clustering algorithm. According to the principle of compatible relationship,the distance function is calculated to make the topic present a certain hierarchical structure. Then the compatible membership function is used to confirm the topic of the boundary text,and the corpus indicating the annotation information is formed. At the same time,based on Ontology sentiment classification,the semantic similarity in emotional vocabulary is calculated,the tendency weight of target emotional vocabulary is calculated,and the topic recognition and tracking model based on granular quotient space is established to effectively promote the research of topic orientation. Finally,the identification and tracking of online public opinion topics is realized to provide guidance for relevant departments to supervise network public opinion and master the direction of public opinion.

相似文献/References:

[1]王刚 王浩.基于粒度的知识粗糙性研究[J].计算机技术与发展,2008,(01):67.
 WANG Gang,WANG Hao.On the Roughness of Knowledge Based on Granularity[J].,2008,(07):67.
[2]汪小燕 王浩.基于二进制可辨矩阵的知识粒度研究及应用[J].计算机技术与发展,2006,(10):91.
 WANG Xiao-yan,WANG Hao.Research and Application of Knowledge Granulation Based on Binary Discernible Matrix[J].,2006,(07):91.

更新日期/Last Update: 2019-07-10