[1]郑锐,刘久富,杨忠,等.马氏田口施密特度量学习算法研究[J].计算机技术与发展,2019,29(04):29-32.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 006]
 ZHENG Rui,LIU Jiu-fu,YANG Zhong,et al.Research on Mahalanobis-Taguchi-Gram-Schmidt Metric Learning Algorithm[J].,2019,29(04):29-32.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 006]
点击复制

马氏田口施密特度量学习算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年04期
页码:
29-32
栏目:
智能、算法、系统工程
出版日期:
2019-04-10

文章信息/Info

Title:
Research on Mahalanobis-Taguchi-Gram-Schmidt Metric Learning Algorithm
文章编号:
1673-629X(2019)04-0029-04
作者:
郑锐1刘久富1杨忠1王志胜1刘海阳2丁晓彬1
1. 南京航空航天大学 自动化学院,江苏 南京 211100;2. 东南大学 电子科学与工程学院,江苏 南京 210096
Author(s):
ZHENG Rui1LIU Jiu-fu1YANG Zhong1WANG Zhi-sheng1LIU Hai-yang2DING Xiao-bin1
1. School of Automation,Nanjing University of Aeronautics and Astronautics,Nanjing 211100,China;2. School of Electronic Science and Engineering,Southeast University,Nanjing 210096,China
关键词:
异常检测马氏田口模型计算生物学信噪比
Keywords:
anomaly detectionMahalanobis-Taguchi systembio-computingsignal to noise ratio
分类号:
TP206. 2
DOI:
10. 3969 / j. issn. 1673-629X. 2019. 04. 006
摘要:
人工判别人体睡眠质量一直存在着主观性过强,步骤繁琐以及准确性不高等局限性,此外由于人体睡眠异常检测研究的对象主要是人的脑电信号,传统意义上对大数据量的脑电信号仅凭经验观察和实验的方法已很难从中提取有效信息。对此,文中将马氏田口系统判别方法引入到生物计算学领域,提出一种基于马氏田口模型的睡眠质量自动检测算法。该算法通过对人脑双通道脑电信号进行建模分析,整个人睡眠的脑电信号已被人工睡眠专家标记成了六种状态的睡眠周期,算法在不同睡眠周期下,求取各个通道的标准化向量,同时对线性独立向量组进行施密特正交化处理,运用马氏田口施密特正交化方法计算出各个睡眠周期的信噪比均值,以判别出睡眠质量正常者和异常者。实验结果表明,该算法可以有效地对睡眠质量的正常和异常进行检测。
Abstract:
Artificial judgment of human sleep quality is always subjective,cumbersome and inaccurate. In addition,since human sleep anomaly detection is mainly performed on human electroencephalogram (EEG),it is difficult to extract effective information from large amounts of data on electroencephalogram by empirical observation and experimental methods. Therefore,we introduce the MahalanobisTaguchi system method into the field of bio - computing, and propose an automatic sleep quality detection algorithm based on that. Through the modeling and analysis of human brain dual-channel EEG signals,the entire human sleep EEG signal has been labeled as sixstate sleep stages by artificial sleep experts. Under different sleep stages,the normalized vector of each channel is obtained. At the same time,the linear independent vector group is subjected to Gram-Schmidt orthogonalization,and the mean value of the signal-to-noise ratio of each sleep phase is calculated by using the Mahalanobis-Taguchi-Gram-Schmidt method. So the normal quality of sleep and abnormal people can be identified. The experiment shows that the proposed algorithm can effectively detect the normal and abnormal quality of sleep.

相似文献/References:

[1]高峥 陈蜀宇 李国勇.混合入侵检测系统的研究[J].计算机技术与发展,2010,(06):148.
 GAO Zheng,CHEN Shu-yu,LI Guo-yong.Research of a Hybrid Intrusion Detection System[J].,2010,(04):148.
[2]李睿 肖维民.基于孤立点挖掘的异常检测研究[J].计算机技术与发展,2009,(06):168.
 LI Rui,XIAO Wei-min.Research on Anomaly Intrusion Detection Based on Outlier Mining[J].,2009,(04):168.
[3]汪慧敏.基于改进负选择算法的异常检测[J].计算机技术与发展,2009,(08):41.
 WANG Hui-min.Anomaly Detection Using Modified Negative Selection Algorithm[J].,2009,(04):41.
[4]赵辉 张鹏.网络异常的主动检测与特征分析[J].计算机技术与发展,2009,(08):159.
 ZHAO Hui,ZHANG Peng.Active Detection and Feature Analysis About Network Anomaly[J].,2009,(04):159.
[5]陈丹伟 黄秀丽 任勋益.基于人工神经网络入侵检测模型的探讨[J].计算机技术与发展,2009,(12):143.
 CHEN Dan-wei,HUANG Xiu-li,REN Xun-yi.An Approach to IDS Model Based on Artificial Neuron Network[J].,2009,(04):143.
[6]柏海滨 李俊.基于支持向量机的入侵检测系统的研究[J].计算机技术与发展,2008,(04):137.
 BAI Hai-bin,LI Jun.Research of Intrusion Detection System Based on Support Vector Machine[J].,2008,(04):137.
[7]宋连涛 庄卫华.基于异常的入侵检测技术在Snort系统中的应用[J].计算机技术与发展,2006,(06):136.
 SONG Lian-tao,ZHUANG Wei-hua.Application of Anomaly Detection Technology in Snort System[J].,2006,(04):136.
[8]陈平 宋玉蓉 蒋国平.基于多维聚类挖掘的异常检测方法研究[J].计算机技术与发展,2012,(07):136.
 CHEN Ping,SONG Yu-rong,JIANG Guo-ping.Multidimensional Clustering Based Anomaly Detection Research[J].,2012,(04):136.
[9]崔锡鑫,苏伟,刘颖.基于熵的流量分析和异常检测技术研究与实现[J].计算机技术与发展,2013,(05):120.
 CUI Xi-xin,SU Wei,LIU Ying.Research and Implementation of Traffic Analysis and Anomaly Detection Technology Based on Entropy[J].,2013,(04):120.
[10]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(04):29.

更新日期/Last Update: 2019-04-10