[1]李春生,刘涛,于澍,等.基于K-means算法的研究生入学成绩分析[J].计算机技术与发展,2019,29(02):162-165.[doi:10.3969/j.issn.1673-629X.2019.02.034]
 LI Chunsheng,LIU Tao,YU Shu,et al.Analysis of Enrollment of Graduate Students Based on K-means Algorithm[J].,2019,29(02):162-165.[doi:10.3969/j.issn.1673-629X.2019.02.034]
点击复制

基于K-means算法的研究生入学成绩分析()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年02期
页码:
162-165
栏目:
应用开发研究
出版日期:
2019-02-10

文章信息/Info

Title:
Analysis of Enrollment of Graduate Students Based on K-means Algorithm
文章编号:
1673-629X(2019)02-0162-04
作者:
李春生刘涛于澍张可佳
东北石油大学 计算机与信息技术学院,黑龙江 大庆 163318
Author(s):
LI Chun-shengLIU TaoYU ShuZHANG Ke-jia
School of Computer and Information Technology,Northeast Petroleum University,Daqing 163318,China
关键词:
研究生入学成绩聚类分析K-means 算法成绩分析
Keywords:
graduate enrollment scoresclustering analysisK-means algorithmgrade analysis
分类号:
G424.7
DOI:
10.3969/j.issn.1673-629X.2019.02.034
摘要:
研究生入学成绩是导师初步了解学生学习能力、学习风格、制定研究生培养方案的重要参考指标。随着学校招生规模的扩大,学生人数的增加,研究生入学成绩的日趋复杂,传统的分析方法已经不能满足当前对于研究生入学成绩分析的需要。通过应用 K-means 聚类算法对研究生入学成绩进行分析,将研究生入学成绩进行分类,发现学生成绩分布的特点,找出成绩之间的关系,了解学生各科的学习状况,找到适合学生发展的方向,以实现个性化的研究生教育和培养,所得结果为研究生培养方案的制定与研究生进行研究方向的选择提供了借鉴意义。首先,分析了几种主要聚类算法应用于研究生入学成绩的适用性;其次,介绍了 K-means 聚类算法;最后,对研究生入学成绩进行数据分析、预处理。通过实验证明了 K-means 聚类算法在研究生入学成绩分析中的实用性。
Abstract:
Postgraduate enrollment is an important reference for instructors to understand students’learning ability,learning style and development of postgraduate training programs. With the expansion of enrollment scale,the increase of students and the growing complexity of the postgraduate enrollment,the traditional analysis methods can no longer meet the current needs of graduate enrollment analysis.Through the application of K-means clustering algorithm to analyze the results of graduate enrollment,the graduate enrollment score is classified to find out the characteristics of student achievement distribution and the relationship between achievements,and the learning situation of students in each subject is understood to find a direction suitable for student development,achieving personalized graduate education and training. The results provide a reference for the formulation of postgraduate training programs and the selection of research direction for graduate students. Firstly,the applicability of several major clustering algorithms for graduate student enrollment performance is analyzed. Secondly,the K-means clustering algorithm is introduced. Finally,the data of graduate enrollment grades are analyzed and preprocessed. The practicability of K-means clustering algorithm in the analysis of postgraduate enrollment score is demonstrated by experiments.

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(02):120.
[2]查文琴 梁昌勇 曹镭.基于用户聚类的协同过滤推荐方法[J].计算机技术与发展,2009,(06):69.
 ZHA Wen-qin,LIANG Chang-yong,CAO Lei.Collaborative Filtering Recommendation Method Based on Clustering of Users[J].,2009,(02):69.
[3]狄明明 孙德山.聚类分析和支持向量机在股票研究中的应用[J].计算机技术与发展,2009,(06):229.
 DI Ming-ming,SUN De-shan.Applications of Cluster Analysis and Support Vector Machines to Stock Research[J].,2009,(02):229.
[4]李雷 罗红旗 丁亚丽.一种改进的模糊C均值聚类算法[J].计算机技术与发展,2009,(12):71.
 LI Lei,LUO Hong-qi,DING Ya-li.A Novel FCM Clustering Algorithm[J].,2009,(02):71.
[5]李丽芳 周鸣争.一种基于构造性核覆盖的聚类算法[J].计算机技术与发展,2009,(01):88.
 LI Li-fang,ZHOU Ming-zheng.A Clustering Algorithm Based on Constructive Kernel Covering Algorithm[J].,2009,(02):88.
[6]朱桂宏 王刚.基于数据流的网络入侵检测研究[J].计算机技术与发展,2009,(03):175.
 ZHU Gui-hong,WANG Gang.Research on Network Intrusion Detection Based on Data Stream[J].,2009,(02):175.
[7]罗世谦 冯子亮 张恒.一种基于能量聚类分析的句子语音端点检测法[J].计算机技术与发展,2008,(04):13.
 LUO Shi-qian,FENG Zi-liang,ZHANG Heng.A Sentential Endpoint Detection Algorithm Based on Energy Eigenvalue and Clustering Analysis[J].,2008,(02):13.
[8]谢铮桂 韦玉科 钟少丹.基于径向基神经网络用于中医舌诊诊断的研究[J].计算机技术与发展,2008,(09):242.
 XIE Zheng-gui,WEI Yu-ke,ZHONG Shao-dan.Research of RBF Neural Networks Based on Clustering Analysis in TCM Inspection of Tongue Diagnosis[J].,2008,(02):242.
[9]徐仰彬 刘志镜.基于DBSCAN的簇共享对象的处理办法[J].计算机技术与发展,2007,(07):38.
 XU Yang-bin,LIU Zhi-jing.A DBSCAN - Based Algorithm for Boundary Object of Cluster[J].,2007,(02):38.
[10]朱建平 曾玉钰.基于属性重要性的定性数据聚类分析及应用[J].计算机技术与发展,2007,(12):89.
 ZHU Jian-ping,ZENG Yu-yu.Analysis and Application of Qualitative Data Clustering Approach Based on Attribute Importance[J].,2007,(02):89.

更新日期/Last Update: 2019-02-10