[1]章星晨,孙刘杰.基于Shearlet变换的Retinex去雾算法[J].计算机技术与发展,2019,29(01):40-43.[doi:10. 3969 / j. issn. 1673-629X. 2019. 01. 009]
 ZHANG Xing-chen,SUN Liu-jie.Retinex Dehazing Algorithm Based on Shearlet Transform[J].,2019,29(01):40-43.[doi:10. 3969 / j. issn. 1673-629X. 2019. 01. 009]
点击复制

基于Shearlet变换的Retinex去雾算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
29
期数:
2019年01期
页码:
40-43
栏目:
智能、算法、系统工程
出版日期:
2019-01-10

文章信息/Info

Title:
Retinex Dehazing Algorithm Based on Shearlet Transform
文章编号:
1673-629X(2019)01-0040-04
作者:
章星晨 孙刘杰
上海理工大学,上海,200093
Author(s):
ZHANG Xing-chenSUN Liu-jie
University of Shanghai for Science and Technology,Shanghai 200093,China
关键词:
图像去雾 Shearlet变换 多尺度Retinex算法 阈值法
Keywords:
image defoggingShearlet transformmulti-scale Retinex algorithmthreshold method
分类号:
TP391.9
DOI:
10. 3969 / j. issn. 1673-629X. 2019. 01. 009
摘要:
通常,雾天情况下拍摄的图像会因大气粒子散射而出现对比度低、图像模糊等问题,对交通监控系统等造成了一定的影响.针对这一问题,提出一种基于Shearlet变换的Retinex去雾算法.首先对有雾图像进行Shearlet变换分解,得到低频信息和一系列高频信息;由于雾气大部分存在于低频分量上,优先对低频系数使用多尺度Retinex算法进行处理以降低雾气对图像的影响;再对高频系数采用阈值法进行处理以去除噪声;最后再进行Shearlet逆变换,从而实现去雾,得到最终的增强图像.实验结果表明,该算法能增强图像的视觉效果,使图像的细节更丰富,达到去雾的目的.与其他算法相比,在亮度、对比度和信息熵方面均有一定程度的提高,处理后图像的视觉效果更好,是一种有效的雾天图像清晰化算法.
Abstract:
Generally,the image taken in fog will have problems such as low contrast and blurring due to scattering of atmospheric particles,which affects traffic monitoring system to some extent. To solve this problem,we propose a Retinex dehazing algorithm based on Shearlet transform. Firstly,Shearlet transform is performed to decompose the foggy image to obtain low-frequency information and a series of high-frequency information. Because fog mostly exists on the low-frequency components,the multi-scale Retinex algorithm is preferred to process the low-frequency coefficients to reduce the effect of fog on the image. Then,the high-frequency coefficients are processed by threshold method to remove noise. Finally,Shearlet inverse transformation is performed to achieve defogging and the final enhanced image is obtained. The experiment shows that the proposed algorithm enhances the visual effect of the image and makes the details of the image more abundant,achieving the purpose of defogging. Compared with other algorithms,it has a certain improvement in brightness,contrast and information entropy. The processed image has a better visual effect and is an effective algorithm for fog image sharpening

相似文献/References:

[1]王万国,王滨海,张晶晶,等. 基于直方图规定化的图像去雾算法[J].计算机技术与发展,2014,24(09):241.
 WANG Wan-guo,WANG Bin-hai,ZHANG Jing-jing,et al. Image Haze Removal Algorithm Based on Histogram Specification[J].,2014,24(01):241.
[2]李飞,丁若修,张志佳. 基于曲波变换的图像去雾算法研究[J].计算机技术与发展,2017,27(07):65.
 LI Fei,DING Ruo-xiu,ZHANG Zhi-jia. Research on Image Defogging Algorithm Based on Curvelet Transform[J].,2017,27(01):65.
[3]章星晨,孙刘杰.基于引导滤波和变差函数的图像去雾算法[J].计算机技术与发展,2019,29(06):23.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 005]
 ZHANG Xing-chen,SUN Liu-jie.Image Dehazing Algorithm Based on Guided Filtering and Variation Function[J].,2019,29(01):23.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 005]
[4]尹 静,何金玉,罗荣鑫,等.结合天空区域分割和暗通道先验的去雾算法[J].计算机技术与发展,2022,32(08):216.[doi:10. 3969 / j. issn. 1673-629X. 2022. 08. 035]
 YIN Jing,HE Jin-yu,LUO Rong-xin,et al.A Defogging Algorithm Combining Sky Region Segmentation and Dark Channel Prior[J].,2022,32(01):216.[doi:10. 3969 / j. issn. 1673-629X. 2022. 08. 035]

更新日期/Last Update: 2019-01-10