[1]何长杰,白治江.云环境下基于改进蚁群算法的任务调度[J].计算机技术与发展,2018,28(12):13-16.[doi:10.3969/j.issn.1673-629X.2018.12.003]
 HE Changjie,BAI Zhijiang.Task Scheduling Based on Improved Ant Colony Algorithm in Cloud Environment[J].,2018,28(12):13-16.[doi:10.3969/j.issn.1673-629X.2018.12.003]
点击复制

云环境下基于改进蚁群算法的任务调度()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年12期
页码:
13-16
栏目:
智能、算法、系统工程
出版日期:
2018-12-10

文章信息/Info

Title:
Task Scheduling Based on Improved Ant Colony Algorithm in Cloud Environment
文章编号:
1673-629X(2018)12-0013-04
作者:
何长杰;白治江;
上海海事大学信息工程学院;
Author(s):
HE Chang-jieBAI Zhi-jiang
School of Information Engineering,Shanghai Maritime University,Shanghai 201306,China
关键词:
云计算任务调度元启发式算法蚁群算法
Keywords:
cloud computingtask schedulingmeta-heuristicant colony algorithm
分类号:
TP393
DOI:
10.3969/j.issn.1673-629X.2018.12.003
摘要:
云计算是能够提供动态资源池、虚拟化和高可用性的计算平台,达到可扩展性和高可用性两个重要目标。其中云计算任务调度负责为用户的计算任务分配合适的资源,成为云计算一个核心问题。由于云计算任务调度问题是NP-hard问题,近些年提出的启发式(heuristics)算法和元启发式(meta-heuristics)算法取得了良好的效果,蚁群算法作为元启发式算法有良好的鲁棒性和并行性,适合求解组合优化问题。元启发式算法相比较启发式算法求解精度高,但算法运行时间长,基于精英策略的蚁群算法虽能加快收敛速度却易陷入局部最优。为了扩大蚁群搜索空间,防止算法陷入局部最优解,对信息素更新和最优路径奖励进行了改进。实验证明改进后的蚁群算法降低了最大完成时间和不平衡程度,提高了云资源的利用率。
Abstract:
Cloud computing is a computing platform that provides dynamic resource pooling,virtualization and high availability,achieving scalability and high availability of two important goals. Among them,the cloud computing task scheduling is responsible for allocating the appropriate resources for the user’s computing tasks and becomes a core issue of cloud computing. Because cloud computing task scheduling is NP-hard problem,heuristics and meta-heuristics algorithms in recent years are proposed to achieve better results. The ant colony algorithm as a meta-heuristic algorithm has strong robustness and parallelism,which is suitable for solving combinatorial optimiza- tion problems. Compared with the heuristic algorithm,meta-heuristic algorithm has higher solution precision,but runs for a long time. Although the ant colony algorithm based on the elite strategy can speed up the convergence speed,it is easy to fall into the local opti- mum. In order to expand the ant colony search space and prevent the algorithm from falling into the local optimal solution,the phero- mone update and the optimal path reward are improved. Experiment shows that the improved ant colony algorithm can reduce the maxi- mum completion time and degree of unbalance,and improve the cloud resource utilization.

相似文献/References:

[1]王茜,朱志祥,史晨昱,等.应用于数据库安全保护的加解密引擎系统[J].计算机技术与发展,2014,24(01):143.
 WANG Qian[],ZHU Zhi-xiang[],SHI Chen-yu[],et al.Encryption and Decryption Engine System Applying to Database Security and Detection[J].,2014,24(12):143.
[2]陈丹伟 黄秀丽 任勋益.云计算及安全分析[J].计算机技术与发展,2010,(02):99.
 CHEN Dan-wei,HUANG Xiu-li,REN Xun-yi.Analysis of Cloud Computing and Cloud Security[J].,2010,(12):99.
[3]易侃 王汝传.一种基于SOA的网格任务调度框架[J].计算机技术与发展,2010,(04):155.
 YI Kan,WANG Ru-chuan.A Task Scheduling Framework Based on SOA in Grid Computing[J].,2010,(12):155.
[4]郭创 余谅.网格任务调度算法的研究[J].计算机技术与发展,2009,(06):5.
 GUO Chuang,YU Liang.Research on Algorithm for Tasks Scheduling in Grid[J].,2009,(12):5.
[5]张辉宜 赵海军 周秀丽.基于Pfair的分布式实时调度策略Linux下实现[J].计算机技术与发展,2008,(02):31.
 ZHANG Hui-yi,ZHAO Hai-jun,ZHOU Xiu-li.Based on Pfair Implementing Distributed Real- Time Scheduling in Linux Kernel[J].,2008,(12):31.
[6]樊晓香.任务调度问题机制设计[J].计算机技术与发展,2008,(07):119.
 FAN Xiao-xiang.Research of Task Scheduling in Mechanism Design[J].,2008,(12):119.
[7]赵健.基于GridSim的A-MM调度算法模拟[J].计算机技术与发展,2008,(10):96.
 ZHAO Jian.A- MM Algorithm Simulation Based on GridSim[J].,2008,(12):96.
[8]孙放 陈云芳 林杭锋.适用于富客户端的云计算模型[J].计算机技术与发展,2010,(08):96.
 SUN Fang,CHEN Yun-fang,LIN Hang-feng.Cloud Computing Model Applicable to Rich Client Applications[J].,2010,(12):96.
[9]韩咚 陈波.基于时间Petri网的多处理机的调度算法[J].计算机技术与发展,2007,(06):15.
 HAN Dong,CHEN Bo.Algorithm of Multiprocessor Scheduling Based on Time Petri Nets[J].,2007,(12):15.
[10]张云锋 李胜磊 王炳波 华庆一[] 郝克刚[].基于Web的网格入口软件研究与实现[J].计算机技术与发展,2007,(07):53.
 ZHANG Yun-feng,LI Sheng-lei,WANG Bing-bo,et al.Research and Implementation of Web- Based Grid Portal[J].,2007,(12):53.
[11]谭文安[][],查安民[],陈森博[]. 优化粒子群的云计算任务调度算法[J].计算机技术与发展,2016,26(07):6.
 TAN Wen-an[]],ZHA An-min[],CHEN Sen-bo[]. Task Scheduling Algorithm of Cloud Computing Based on Particle Swarm Optimization [J].,2016,26(12):6.
[12]查安民[],谭文安[][]. 融合粒子群与蚁群的云计算任务调度算法[J].计算机技术与发展,2016,26(08):24.
 ZHA An-min[],TAN Wen-an[][]. A Task Scheduling Algorithm of Cloud Computing Merging Particle Swarm Optimization and Ant Colony Optimization[J].,2016,26(12):24.
[13]张晓丽. 自适应CPSO算法在云计算任务调度中的应用[J].计算机技术与发展,2016,26(08):161.
 ZHANG Xiao-li. Application of Self-adaptive Chaos Particle Swarm Optimization in Task Scheduling for Cloud Computing[J].,2016,26(12):161.
[14]胡艳华[],唐新来[][]. 基于改进遗传算法的云计算任务调度算法[J].计算机技术与发展,2016,26(10):137.
 HU Yan-hua[],TANG Xin-lai[][]. A Task Scheduling Algorithm Based on Improved Genetic Algorithm in Cloud Computing Environment[J].,2016,26(12):137.
[15]朱丽玲,杨智应. 基于VOO方法的云计算平台多目标任务调度算法[J].计算机技术与发展,2017,27(01):11.
 ZHU Li-ling,YANG Zhi-ying. A Multi-objective Scheduling Algorithm of Many Tasks in Cloud Platforms Based on Method of VOO[J].,2017,27(12):11.
[16]李慧,雷丽晖. 云计算环境下基于马氏距离的任务调度策略研究[J].计算机技术与发展,2017,27(01):53.
 LI Hui,LEI Li-hui. Research on Task Scheduling Strategy in Cloud Computing Based on Mahalanobis Distance[J].,2017,27(12):53.
[17]刘春燕[],杨巍巍[]. 云计算基于遗传粒子群算法的多目标任务调度[J].计算机技术与发展,2017,27(02):56.
 LIU Chun-yan[],YANG Wei-wei[]. A Multi-objective Task Scheduling Based on Genetic and Particle Swarm Optimization Algorithm for Cloud Computing[J].,2017,27(12):56.
[18]秦军[],董倩倩[],郝天曙[]. 基于蚁群模拟退火的云任务调度算法改进[J].计算机技术与发展,2017,27(03):117.
 QIN Jun[],DONG Qian-qian[],HAO Tian-shu[]. Improvement of Algorithm for Cloud Task Scheduling Based on Ant Colony Optimization and Simulated Annealing[J].,2017,27(12):117.
[19]李水泉,邓 泓.相对最小执行时间方差的云计算任务调度算法[J].计算机技术与发展,2018,28(07):34.[doi:10.3969/ j. issn.1673-629X.2018.07.008]
 LI Shui-quan,DENG Hong.Min-variance Tasks Scheduling Algorithm for Cloud Computing System[J].,2018,28(12):34.[doi:10.3969/ j. issn.1673-629X.2018.07.008]
[20]王宏杰,徐胜超.基于改进遗传算法的云计算任务调度方法[J].计算机技术与发展,2024,34(02):40.[doi:10. 3969 / j. issn. 1673-629X. 2024. 02. 006]
 WANG Hong-jie,XU Sheng-chao.Cloud Computing Task Scheduling Method Based on Improved Genetic Algorithm[J].,2024,34(12):40.[doi:10. 3969 / j. issn. 1673-629X. 2024. 02. 006]

更新日期/Last Update: 2018-12-10