[1]宋相法,姚旭.基于多描述子特征编码的人体行为识别[J].计算机技术与发展,2018,28(08):17-21.[doi:10.3969/ j. issn.1673-629X.2018.08.004]
 SONG Xiang-fa,YAO Xu.Human Activity Recognition Based on Multi-descriptor Feature Coding[J].,2018,28(08):17-21.[doi:10.3969/ j. issn.1673-629X.2018.08.004]
点击复制

基于多描述子特征编码的人体行为识别()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年08期
页码:
17-21
栏目:
智能、算法、系统工程
出版日期:
2018-08-10

文章信息/Info

Title:
Human Activity Recognition Based on Multi-descriptor Feature Coding
文章编号:
1673-629X(2018)08-0017-05
作者:
宋相法姚旭
河南大学 计算机与信息工程学院,河南 开封 475004
Author(s):
SONG Xiang-faYAO Xu
School of Computer and Information Engineering,Henan University,Kaifeng 475004,China
关键词:
人体行为识别特征编码运动姿态描述子角度描述子三维人体骨架序列
Keywords:
human activity recognitionfeature codingmoving pose descriptorangle descriptor3D human skeleton sequence
分类号:
TP391
DOI:
10.3969/ j. issn.1673-629X.2018.08.004
文献标志码:
A
摘要:
针对采用单一描述子和单一特征编码方法导致三维人体骨架序列的行为识别率较低的问题,提出一种基于多描述子特征编码的方法。 首先,从三维人体骨架序列中分别提取运动姿态描述子和角度描述子。 然后,对每种描述子分别进行向量量化编码、稀疏编码和局部约束线性编码,从而获得六种特征。 最后,根据这六种特征分别构造线性分类器,通过投票机制得到最终的识别结果。 为了验证所提方法的有效性,在三维人体骨架序列行为数据集 MSR Action3D 上进行了实验,实验结果表明该方法的识别率为 94.9%,并且高于其他方法的识别率。
Abstract:
Aiming at the problem of low activity recognition rate from 3D human skeleton sequence based on a single descriptor and a single feature coding method,we propose a method based on multi-descriptor feature coding. Firstly,moving pose descriptor and angle descriptor are extracted respectively from 3D human skeleton sequence. Then,vector quantization coding,sparse coding and locality constrained linear coding are employed respectively to get six kinds of feature based on two kinds of descriptor. Finally,linear classifiers are respectively constructed based on these six kinds of feature,and the recognition result is decided by voting strategy. In order to validate the effects of the proposed method,the experiment on MSR Action3D,a public 3D human skeleton sequence activity database,demonstrates that the proposed method achieves 94.9% of recognition accuracy,which is superior to the state-of-art of methods.

相似文献/References:

[1]陈翔.一种基于中文字符编码的文本水印算法研究[J].计算机技术与发展,2013,(02):237.
 CHEN Xiang.Research of a Text Watermarking Algorithm Based on Chinese Character Coding[J].,2013,(08):237.
[2]宋相法,姚旭.基于多特征的深度图像序列人体行为识别[J].计算机技术与发展,2018,28(06):30.[doi:10.3969/ j. issn.1673-629X.2018.06.007]
 SONG Xiang-fa,YAO Xu.Human Activity Recognition from Depth Image Sequences Based on Multiple Features[J].,2018,28(08):30.[doi:10.3969/ j. issn.1673-629X.2018.06.007]
[3]朱连章,陈殿明,郭加树,等.基于协同LSTM神经网络的人体行为识别研究[J].计算机技术与发展,2018,28(12):79.[doi:10.3969/j. issn.1673-629X.2018.12.017]
 ZHU Lianzhang,CHEN Dianming,GUO Jiashu,et al.Research on Human Action Recognition Based on Synergistic LSTM Neural Network[J].,2018,28(08):79.[doi:10.3969/j. issn.1673-629X.2018.12.017]
[4]宋相法,吕 明.融合三维骨架和深度图像特征的人体行为识别[J].计算机技术与发展,2019,29(07):55.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 011]
 SONG Xiang-fa,LYU Ming.Human Activity Recognition Based on Fusing 3D Skeleton and Depth Image Feature[J].,2019,29(08):55.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 011]
[5]丁 应,李 琳.一种基于特征编码技术的恶意代码检测方法[J].计算机技术与发展,2021,31(01):131.[doi:10. 3969 / j. issn. 1673-629X. 2021. 01. 024]
 DING Ying,LI Lin.A Method for Detecting Malicious Code Based onFeature Encoding Technology[J].,2021,31(08):131.[doi:10. 3969 / j. issn. 1673-629X. 2021. 01. 024]

更新日期/Last Update: 2018-10-15