[1]王嘉文,王传栋,杨雁莹.一种中文人名识别的训练架构[J].计算机技术与发展,2018,28(07):53-57.[doi:10.3969/ j. issn.1673-629X.2018.07.012]
 WANG Jia-wen,WANG Chuan-dong,YANG Yan-ying.A Training Framework for Chinese Name Recognition[J].,2018,28(07):53-57.[doi:10.3969/ j. issn.1673-629X.2018.07.012]
点击复制

一种中文人名识别的训练架构()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年07期
页码:
53-57
栏目:
智能、算法、系统工程
出版日期:
2018-07-10

文章信息/Info

Title:
A Training Framework for Chinese Name Recognition
文章编号:
1673-629X(2018)07-0053-05
作者:
王嘉文1 王传栋1 杨雁莹2
1. 南京邮电大学 计算机学院,江苏 南京 210023;
2. 南京森林警察学院,江苏 南京 210023
Author(s):
WANG Jia-wen 1 WANG Chuan-dong 1 YANG Yan-ying 2
1. School of Computer and Software,Nanjing University of Posts and Telecommunications,Nanjing 210023,China;
2. Nanjing Forest Police College,Nanjing 210023,China
关键词:
自然语言处理深度学习神经网络中文人名识别
Keywords:
natural language processingdeep learningneural networksChinese name recognition
分类号:
TP391
DOI:
10.3969/ j. issn.1673-629X.2018.07.012
文献标志码:
A
摘要:
中文人名识别作为中文语言处理的一项关键技术,广泛应用于文本挖掘、语义分析、机器翻译等领域。 在数据日趋海量化和异构化的当今社会,对于中文人名进行命名实体识别已经成为现阶段中文自然语言处理的研究热点之一。 由于现有方法大多依赖于先验的领域知识和工程化的特征,识别模型常需要研究人员的大量语言学知识。 为了减少甚至忽略对这些工程化的特征的依赖,旨在建立一种较为灵活的深度神经网络架构,通过对大规模未标记语料的内部表示的学习,使得系统减少甚至忽略这些工程化特征的影响,采用无监督的方法进行中文人名识别。 实验结果表明,该模型不但性能良好,而且不需要过多的计算资源,在中文人名识别的应用中具有良好的效果。
Abstract:
Chinese name recognition,as a key technology in Chinese language processing,is widely used in text mining,semantic analysis,machine translation and other fields. The data are becoming massive and heterogeneous in today’s society,so the named entity recognition for Chinese names has become one of the hotspots of Chinese natural language processing at this stage. Identification model often requires a large number of linguistic knowledge of the researchers because most of the existing methods rely on transcendental domain knowledge and engineering characteristics. In order to reduce or even ignore the dependence on these engineering features,we aim to establish a more flexible deep neural network architecture which can be through the large-scale unmarked corpus of the internal representation of learning,making the system reduce or even ignore the impact of these engineering features and using the unsupervised method for Chinese name recognition. Experiment shows that the model not only has excellent performance but also does not need too much computing resources,with good effect in the Chinese name recognition application.

相似文献/References:

[1]陈国华 赵克 李亚涛 易帅.自然语言处理系统中的事件类名词的耦合处理[J].计算机技术与发展,2008,(06):60.
 CHEN Guo-hua,ZHAO Ke,LI Ya-tao,et al.Coupling Processing of Event Noun in NLP Systems[J].,2008,(07):60.
[2]程节华.基于FAQ的智能答疑系统中分词模块的设计[J].计算机技术与发展,2008,(07):181.
 CHENG Jie-hua.Design of Words Module in Intelligent Q/A System Based on FAQ[J].,2008,(07):181.
[3]杨欢 许威 赵克 陈余.动词属性在自然语言处理当中的研究与应用[J].计算机技术与发展,2008,(07):233.
 YANG Huan,XU Wei,ZHAO Ke,et al.Research and Application of Verb Attributes in Natural Language Processing[J].,2008,(07):233.
[4]孙超 张仰森.面向综合语言知识库的知识融合与获取研究[J].计算机技术与发展,2010,(08):25.
 SUN Chao,ZHANG Yang-sen.Research of Knowledge Integration and Obtaining Oriented Comprehensive Language Knowledge System[J].,2010,(07):25.
[5]党建 亿珍珍 赵克 殷鸿.数学领域集体词结构形式化处理研究[J].计算机技术与发展,2007,(05):121.
 DANG Jian,YI Zhen-zhen,ZHAO Ke,et al.Research of Formalization Processing for Collective Structures in Mathematics Domain[J].,2007,(07):121.
[6]江有福 郑庆华.自然语言网络答疑系统中倒排索引技术的研究[J].计算机技术与发展,2006,(02):126.
 JIANG You-fu,ZHENG Qing-hua.Research of Inverted Index in NLWAS[J].,2006,(07):126.
[7]刘亚清 张瑾 于纯妍.基于义原同现频率的汉语词义排歧系统[J].计算机技术与发展,2006,(05):184.
 LIU Ya-qing,ZHANG Jin,YU Chun-yan.A Chinese Word Sense Disambiguation System Based on Primitive CO- Occurrence Data[J].,2006,(07):184.
[8]刘政怡 李炜 吴建国.基于IMM—IME的汉字键盘输入法编程技术研究[J].计算机技术与发展,2006,(12):43.
 LIU Zheng-yi,LI Wei,WU Jian-guo.Research of Programming Technology of Chinese Input Method Based on IMM- IME[J].,2006,(07):43.
[9]赵鹏 何留进 孙凯 方薇[].基于情感计算的网络中文信息分析技术[J].计算机技术与发展,2010,(11):146.
 ZHAO Peng,HE Liu-jin,SUN Kai,et al.Analyzing Technologies of Internet Chinese Information Based on Affective Computing[J].,2010,(07):146.
[10]徐远方 李成城.基于SVM和词间特征的新词识别研究[J].计算机技术与发展,2012,(05):134.
 XU Yuan-fang,LI Cheng-cheng.Research on New Word Identification Based on SVM and Word Characteristics[J].,2012,(07):134.
[11]黄 鹤,荆晓远,董西伟,等.基于 Skip-gram 的 CNNs 文本邮件分类模型[J].计算机技术与发展,2019,29(06):143.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 030]
 HUANG He,JING Xiao-yuan,DONG Xi-wei,et al.CNNs-Highway Text Message Classification Model Based on Skip-gram[J].,2019,29(07):143.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 030]
[12]王睿怡,罗森林,吴舟婷,等.深度学习在汉语语义分析的应用与发展趋势[J].计算机技术与发展,2019,29(09):110.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 022]
 WANG Rui-yi,LUO Sen-lin,WU Zhou-ting,et al.Application and Development Trend of Deep Learning in Chinese Semantic Analysis[J].,2019,29(07):110.[doi:10. 3969 / j. issn. 1673-629X. 2019. 09. 022]
[13]张 千,王庆玮,张 悦,等.基于深度学习的文本特征提取研究综述[J].计算机技术与发展,2019,29(12):61.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 011]
 ZHANG Qian,WANG Qing-wei,ZHANG Yue,et al.Review of Text Feature Extraction Based on Deep Learning[J].,2019,29(07):61.[doi:10. 3969 / j. issn. 1673-629X. 2019. 12. 011]
[14]邵云霞,王 程,成 彬,等.病种分类方法在医保中的应用研究[J].计算机技术与发展,2021,31(04):46.[doi:10. 3969 / j. issn. 1673-629X. 2021. 04. 008]
 SHAO Yun-xia,WANG Cheng,CHENG Bin,et al.Research on Application of Disease Classification Methods inMedical Insurance[J].,2021,31(07):46.[doi:10. 3969 / j. issn. 1673-629X. 2021. 04. 008]
[15]程换新,张志浩,刘文翰,等.基于生成对抗网络的图像识别[J].计算机技术与发展,2021,31(06):175.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 031]
 CHENG Huan-xin,ZHANG Zhi-hao,LIU Wen-han,et al.Image Recognition Based on Generative Adversarial Network[J].,2021,31(07):175.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 031]
[16]卢 琪,谢艺菲,谢 钧,等.知识图谱在智能问答中的应用研究[J].计算机技术与发展,2021,31(07):13.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 003]
 LU Qi,XIE Yi-fei,XIE Jun,et al.Research on Application of Knowledge Graphs in Intelligent Question Answering[J].,2021,31(07):13.[doi:10. 3969 / j. issn. 1673-629X. 2021. 07. 003]
[17]杨立鹏,廉文彬,季续国,等.12306 在线咨询服务智能应答研究[J].计算机技术与发展,2022,32(07):149.[doi:10. 3969 / j. issn. 1673-629X. 2022. 07. 026]
 YANG Li-peng,LIAN Wen-bin,JI Xu-guo,et al.Research on Intelligent Response of 12306 Online Consulting Service[J].,2022,32(07):149.[doi:10. 3969 / j. issn. 1673-629X. 2022. 07. 026]
[18]罗 峦,夏骄雄.融合 ERNIE 与改进 Transformer 的中文 NER 模型[J].计算机技术与发展,2022,32(10):120.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 020]
 LUO Luan,XIA Jiao-xiong.Research on Chinese Named Entity Recognition Combining ERNIE with Improved Transformer[J].,2022,32(07):120.[doi:10. 3969 / j. issn. 1673-629X. 2022. 10. 020]
[19]王 婷*,何松泽,杨 川.知识图谱相关方法在脑科学领域的应用综述[J].计算机技术与发展,2022,32(11):1.[doi:10. 3969 / j. issn. 1673-629X. 2022. 11. 001]
 WANG Ting*,HE Song-ze,YANG Chuan.An Application Review of Knowledge Graph Related Methods in Field of Human Brain Science[J].,2022,32(07):1.[doi:10. 3969 / j. issn. 1673-629X. 2022. 11. 001]
[20]张 影,方贤进,杨高明.面向自然语言处理领域的对抗样本生成方法[J].计算机技术与发展,2023,33(03):98.[doi:10. 3969 / j. issn. 1673-629X. 2023. 03. 015]
 ZHANG Ying,FANG Xian-jin,YANG Gao-ming.Adversarial Examples Generation Method for Natural Language Processing[J].,2023,33(07):98.[doi:10. 3969 / j. issn. 1673-629X. 2023. 03. 015]

更新日期/Last Update: 2018-08-27