[1]郭子琰,舒心,刘常燕,等.基于ReLU 函数的卷积神经网络的花卉识别算法[J].计算机技术与发展,2018,28(05):154-157.[doi:10.3969/j.issn.1673-629X.2018.05.035]
 GUO Ziyan,SHU Xin,LIU Changyan,et al.A Recognition Algorithm of Flower Based on Convolution Neural Network with ReLU Function[J].,2018,28(05):154-157.[doi:10.3969/j.issn.1673-629X.2018.05.035]
点击复制

基于ReLU 函数的卷积神经网络的花卉识别算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年05期
页码:
154-157
栏目:
应用开发研究
出版日期:
2018-05-10

文章信息/Info

Title:
A Recognition Algorithm of Flower Based on Convolution Neural Network with ReLU Function
文章编号:
1673-629X(2018)05-0154-04
作者:
郭子琰舒心刘常燕李雷
南京邮电大学,江苏 南京 210023
Author(s):
GUO Zi-yanSHU XinLIU Chang-yanLI Lei
Nanjing University of Posts and Telecommunications,Nanjing 210023,China
关键词:
ReLU 函数卷积神经网络花卉识别近似生物神经激活函数
Keywords:
ReLUCNNrecognition of flowerapproximate biological nerve activation function
分类号:
TP391.41
DOI:
10.3969/j.issn.1673-629X.2018.05.035
文献标志码:
A
摘要:
目前对于花卉识别的工作较少,且在已有实验结果中,识别准确率和识别计算速度偏低,需要改进算法、改善实验结果。卷积神经网络由于其可以将图像直接作为输入对象从而避免人工提取特征过程的误差,且在各种外物因素下(光照、旋转、遮挡等)具有良好的鲁棒性,所以在图像识别方面具有巨大的优势。因此选取卷积神经网络对花卉进行识别。在传统卷积神经网络中,一般选用 Sigmoid 函数作为激活函数,但是使用这种函数需要进行预训练,否则将会出现梯度消失无法收敛的问题。而采用近似生物神经激活函数 ReLU 则可以避免这一问题,提高机器学习的效果和速度。最终达到了92.5%的识别正确率。
Abstract:
There is less work on flower recognition presently,and in the existing experiments,the recognition accuracy and recognition calculation speed are low,so it is needed to improve the algorithm and experimental results.Convolution neural network has robustness in various external factors (illumination,rotation,occlusion,etc.) and great advantages in image recognition,which can be selected for recognition of flower.In traditional convolution neural network,the Sigmoid function is normally used as the activation function,but it needs to be pre-trained,otherwise there will exist the problem of gradient vanishing and not converging.ReLU function,which is a kind of approximate biological nerve activation function,is applied to improve the effect and speed of machine learning and achieves the 92.5% recognition accuracy finally.

相似文献/References:

[1]崔凤焦.表情识别算法研究进展与性能比较[J].计算机技术与发展,2018,28(02):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
 CUI Feng-jiao.Research and Performance Comparison of Facial Expression Recognition Algorithm[J].,2018,28(05):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
[2]张丹丹,李雷. 基于PCANet-RF的人脸检测系统[J].计算机技术与发展,2016,26(02):31.
 ZHANG Dan-dan,LI Lei. Face Detection System Based on PCANet-RF[J].,2016,26(05):31.
[3]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].,2018,28(05):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[4]缪宇杰,吴智钧,宫 婧.基于3D 卷积的视频错帧筛选方法[J].计算机技术与发展,2018,28(05):179.[doi:10.3969/ j. issn.1673-629X.2018.05.040]
 MIAO Yu-jie,WU Zhi-jun,GONG Jing.A Wrong Temporal-order Frames Identification Method Based on 3D Convolution[J].,2018,28(05):179.[doi:10.3969/ j. issn.1673-629X.2018.05.040]
[5]吴玉枝,吴志红,熊运余.基于卷积神经网络的小样本车辆检测与识别[J].计算机技术与发展,2018,28(06):1.[doi:10.3969/ j. issn.1673-629X.2018.06.001]
 WU Yu-zhi,WU Zhi-hong,XIONG Yun-yu.Vehicle Detection and Recognition of a Few Samples Based on Convolutional Neural Network[J].,2018,28(05):1.[doi:10.3969/ j. issn.1673-629X.2018.06.001]
[6]李相桥,李晨,田丽华,等.卷积神经网络并行训练的优化研究[J].计算机技术与发展,2018,28(08):12.[doi:10.3969/ j. issn.1673-629X.2018.08.003]
 LI Xiang-qiao,LI Chen,TIAN Li-hua,et al.Research on Optimization of Parallel Training for Convolution Neural Network[J].,2018,28(05):12.[doi:10.3969/ j. issn.1673-629X.2018.08.003]
[7]邓宗平,赵启军,陈虎. 基于深度学习的人脸姿态分类方法[J].计算机技术与发展,2016,26(07):11.
 DEND Zong-ping,ZHAO Qi-jun,CHEN Hu. Face Pose Classification Method Based on Deep Learning[J].,2016,26(05):11.
[8]河海大学 计算机与信息学院,江苏 南京 0098.卷积网络的无监督特征提取对人脸识别的研究[J].计算机技术与发展,2018,28(06):17.[doi:10.3969/ j. issn.1673-629X.2018.06.004]
 DU Bai-sheng.Research on Unsupervised Feature Extraction Based on Convolutional Neural Network for Face Recognition[J].,2018,28(05):17.[doi:10.3969/ j. issn.1673-629X.2018.06.004]
[9]高翔,陈志,岳文静,等.基于视频场景深度学习的人物语义识别模型[J].计算机技术与发展,2018,28(06):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
 GAO Xiang,CHEN Zhi,YUE Wen-jing,et al.Human Semantic Recognition Model Based on Video Scene Deep Learning[J].,2018,28(05):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
[10]戴晓薇,赵启军. 基于回归的指纹方向场估计[J].计算机技术与发展,2017,27(01):1.
 DAI Xiao-wei,ZHAO Qi-jun. Fingerprint Orientation Field Estimation Based on Regression[J].,2017,27(05):1.

更新日期/Last Update: 2018-07-06