[1]汪晨,张玲华.基于人工鱼群算法的改进质心定位算法[J].计算机技术与发展,2018,28(05):103-106.[doi:10.3969/ j. issn.1673-629X.2018.05.024]
 WANG Chen,ZHANG Ling-hua.An Improved Centroid Localization Algorithm Based on Optimized Artificial Fish Swarm Algorithm[J].,2018,28(05):103-106.[doi:10.3969/ j. issn.1673-629X.2018.05.024]
点击复制

基于人工鱼群算法的改进质心定位算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年05期
页码:
103-106
栏目:
智能、算法、系统工程
出版日期:
2018-05-10

文章信息/Info

Title:
An Improved Centroid Localization Algorithm Based on Optimized Artificial Fish Swarm Algorithm
文章编号:
1673-629X(2018)05-0103-04
作者:
汪晨1 张玲华2
1. 南京邮电大学 通信与信息工程学院,江苏 南京 210003;
2. 江苏省通信与网络技术工程研究中心,江苏 南京 210003
Author(s):
WANG Chen1 ZHANG Ling-hua2
1. School of Telecommunication &Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China;
2. Communication and Network Technology Engineering Research Center,Nanjing 210003,China
关键词:
无线传感器网络人工鱼群算法加权质心算法定位精度
Keywords:
wireless sensor networkartificial fish swarm algorithmweighted centroid algorithmpositioning accuracy
分类号:
TN926
DOI:
10.3969/ j. issn.1673-629X.2018.05.024
文献标志码:
A
摘要:
针对传统质心定位算法精度不高的问题,提出了一种基于人工鱼群算法的改进质心定位算法。 人工鱼群算法(AFSA)是一种新型的巡游策略,具有鲁棒性强,全局收敛好以及对初值不敏感等优势,所以将人工鱼群算法与加权质心算法相结合。 利用加权质心算法,先计算锚节点与未知节点间的距离,再根据此距离估算未知节点位置。 根据测得的距离和锚节点位置信息建立适应度函数,利用该算法具有收敛于全局最优值的特点,不断迭代寻优,对未知节点的估计结果进行优化和修正,从而提高节点的定位精度。 实验结果表明,与一般质心定位算法相比,虽然在一定程度上增加了一些计算开销,但该算法的定位精度更高,稳定性更好,收敛速度更快,具有优越性和可行性。
Abstract:
We propose an improved centroid localization algorithm based on artificial fish swarm algorithm,aiming at the problem that the accuracy of the traditional centroid localization algorithm is not high. Artificial fish swarm algorithm (AFSA) is a new type of parade strategy,with strong robustness,perfect global convergence and the initial value of the insensitivity and other advantages,which will be combined with the weighted centroid algorithm. The distance between the anchor node and the unknown node is calculated by the weighted centroid algorithm,by which the position of the unknown node is estimated. And then the measured distance and anchor node position information are utilized to establish the fitness function. The estimation result of the unknown node is optimized and modified by iterative optimization according to the characteristic of the proposed algorithm converging to the global optimal. The experiments show that compared with the general centroid localization algorithm,although the proposed algorithm increases computational cost to a certain extent,it is superior and feasible with better high positioning accuracy,better stability and faster convergence speed.

相似文献/References:

[1]李雷 付东阳.基于分层模型的无线传感器网络分簇路由算法[J].计算机技术与发展,2010,(01):132.
 LI Lei,FU Dong-yang.Clustering Protocol Algorithm of Wireless Sensor Networks Based on Level Model[J].,2010,(05):132.
[2]王会颖 章义刚.求解聚类问题的改进人工鱼群算法[J].计算机技术与发展,2010,(03):84.
 WANG Hui-ying,ZHANG Yi-gang.An Improved Artificial Fish- Swarm Algorithm of Solving Clustering Analysis Problem[J].,2010,(05):84.
[3]魏烨嘉 王汝传[] 李伟伟 黄海平[] 孙力娟[].基于普适计算环境的三维空间RSSI位置感知研究[J].计算机技术与发展,2010,(04):183.
 WEI Ye-jia,WANG Ru-ehuan[],LI Wei-wei,et al.Research on RSSI- Based Location- Aware in Three- Dimensional Space for Pervasive Computing Environment[J].,2010,(05):183.
[4]邓黎黎 刘才兴.基于信任的无线传感器网络安全路由研究[J].计算机技术与发展,2010,(06):159.
 DENG Li-li,LIU Cai-xing.Research of Trust-Based Secure Routing Protocols for Wireless Sensor Networks[J].,2010,(05):159.
[5]杜鹏雷 吴晓 杨丽平 江涌.面向精准农业的感知节点传感器驱动与控制[J].计算机技术与发展,2010,(06):233.
 DU Peng-lei,WU Xiao,YANG Li-ping,et al.Drive and Control of Sensor Node Facing Precision Agriculture[J].,2010,(05):233.
[6]程佳 支小莉 大贝 晴俊.基于无线传感器网络和ICA的桥梁诊断系统[J].计算机技术与发展,2009,(06):1.
 CHENG Jia,ZHI Xiao-li,OGAI Harutoshi.A Bridge Diagnosis System Based on Wireless Sensor Network and Independent Component Analysis[J].,2009,(05):1.
[7]汪小龙[] 方潜生 葛运建 张伟林[] 周学海[].基于WSN的智能建筑综合控制系统研究[J].计算机技术与发展,2009,(07):48.
 WANG Xiao-long,FANG Qian-sheng,GE Yun-jian,et al.Research on Integrated- Control- System of Intelligent- Building Based on WSN[J].,2009,(05):48.
[8]古明家 宣士斌 廉侃超 李永胜.基于蚁群和人工鱼群算法融合的QoS路由算法[J].计算机技术与发展,2009,(07):145.
 GU Ming-jia,XUAN Shi-bin,LIAN Kan-chao,et al.QoS Routing Algorithm Based on Combination of Modified Ant Colony Algorithm and Artificial Fish Swarm Algorithm[J].,2009,(05):145.
[9]户晓玲 曾建潮.基于微粒群模型的移动传感器网络部署研究[J].计算机技术与发展,2009,(10):81.
 HU Xiao-ling,ZENG Jian-chao.Deployment of Wireless Sensor Networks Mobile Nodes Based on Particle Swarm Optimization Model[J].,2009,(05):81.
[10]闫倩倩 许勇 夏海燕.一种ZigBee路由算法的分析与改进[J].计算机技术与发展,2009,(12):59.
 YAN Qian-qian,XU Yong,XIA Hai-yan.Analysis and Improvement of a Routing Algorithm in Wireless Sensor Network Based on ZigBee[J].,2009,(05):59.

更新日期/Last Update: 2018-07-02