[1]李海波,曹云峰,丁萌,等.基于异源图像特征的显著性融合检测方法[J].计算机技术与发展,2018,28(03):1-5.[doi:10.3969/ j. issn.1673-629X.2018.03.001]
 LI Hai-bo,CAO Yun-feng,DING Meng,et al.A Saliency Fusion Detection Method Based on Image Features from Different Sensors[J].,2018,28(03):1-5.[doi:10.3969/ j. issn.1673-629X.2018.03.001]
点击复制

基于异源图像特征的显著性融合检测方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
28
期数:
2018年03期
页码:
1-5
栏目:
智能、算法、系统工程
出版日期:
2018-03-10

文章信息/Info

Title:
A Saliency Fusion Detection Method Based on Image Features from Different Sensors
文章编号:
1673-629X(2018)03-0001-05
作者:
李海波1 曹云峰2 丁萌3 庄丽葵2
1. 南京航空航天大学 自动化学院,江苏 南京 210016;
2. 南京航空航天大学 航天学院,江苏 南京 210016;
3. 南京航空航天大学 民航学院,江苏 南京 210016
Author(s):
LI Hai-bo1 CAO Yun-feng2 DING Meng3 ZHUANG Li-kui2
1. School of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;
2. School of Astronautics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;
3. School of Civil Aviation,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
关键词:
异源图像特征提取图像分割显著性融合目标检测
Keywords:
sensor imagesfeature extractionimage segmentationsaliency fusiontarget detection
分类号:
TP301.6
DOI:
10.3969/ j. issn.1673-629X.2018.03.001
文献标志码:
A
摘要:
基于光学图像特征的显著性检测在光照条件发生变化的情况下易受到影响,为保证在深空探测等特殊场景中进行准确检测,研究了一种基于光学图像与深度图的显著性融合检测方法。 对于经过配准的光学图像与深度图,分别计算光学图像的显著性图与深度图的显著性图,将计算得到的两类显著性图进行融合,确定所包含的共同显著性区域,消除单类显著图计算过程中存在的异常显著区域,形成新的显著性图。 根据形成的显著性图,按设定阈值转化为二值图,确定显著性区域。 在光学图像中利用显著性区域信息确定目标区域,完成目标所在区域检测。 实验结果表明,该方法可以有效检测出显著性目标所在区域,与其他常用方法相比具有较高的检测准确率。
Abstract:
Saliency detection based on optical image characteristics is easily affected under the condition of light changes. To detect accurately in special scenario of deep space,we study a saliency fusion detection method based on optical image and depth map. For the registered optical image and depth map,the saliency maps of optical image and depth map are calculated respectively and then merged to determine the common salient areas and eliminate the abnormal salient areas in the calculation on single image. A new saliency map is generated and converted into binary image according to the setting threshold to identify significant areas. The significant region information is used to determine target areas on optical image. So far,the target region detection is finished. The experiments show that this method can effectively detect the saliency target areas with high detection accuracy compared with other common methods.

相似文献/References:

[1]田昕辉 李成基.带有短语切分的中文文本分类方法[J].计算机技术与发展,2010,(01):5.
 TIAN Xin-hui,LEE Sung-kee.Phrase Segmentation for Chinese Text Classification[J].,2010,(03):5.
[2]何小娜 逄焕利.基于二维直方图和改进蚁群聚类的图像分割[J].计算机技术与发展,2010,(03):128.
 HE Xiao-na,PANG Huan-li.Image Segmentation Based on Improved Ant Colony Clustering and Two- Dimensional Histogram[J].,2010,(03):128.
[3]罗林波 陈绮.氨基酸序列特征提取方法研究[J].计算机技术与发展,2010,(02):206.
 LUO Lin-bo,CHEN Qi.Research of Feature Extraction Methods of Amino Acid Sequence[J].,2010,(03):206.
[4]姜鹤 陈丽亚.SVM文本分类中一种新的特征提取方法[J].计算机技术与发展,2010,(03):17.
 JIANG He,CHEN Li-ya.A New Feature Selection Method in SVM Text Categorization[J].,2010,(03):17.
[5]毛雁明 兰美辉 王运琼 冯乔生.一种改进的基于Harris的角点检测方法[J].计算机技术与发展,2009,(05):130.
 MAO Yan-ming,LAN Mei-hui,WANG Yun-qiong,et al.An Improved Corner Detection Method Based on Harris[J].,2009,(03):130.
[6]赵辉 张鹏.网络异常的主动检测与特征分析[J].计算机技术与发展,2009,(08):159.
 ZHAO Hui,ZHANG Peng.Active Detection and Feature Analysis About Network Anomaly[J].,2009,(03):159.
[7]汤婷 吴小培 项明.指纹图像增强与特征提取[J].计算机技术与发展,2009,(01):81.
 TANG Ting,WU Xiao-pei,XIANG Ming.Fingerprint Image Enhancement and Minutiae Extraction[J].,2009,(03):81.
[8]张国富 凌捷 彭辉 谷保平.基于支持向量机的手写签名研究[J].计算机技术与发展,2008,(05):57.
 ZHANG Guo-fu,LING Jie,PENG Hui,et al.Research of Handwritten Signature Based on SVM[J].,2008,(03):57.
[9]黄国宏 刘刚.一种新的基于Fisher准则的线性特征提取方法[J].计算机技术与发展,2008,(05):227.
 HUANG Guo-hong,LIU Gang.A New Linear Feature Extraction Method Based on Fisher Criterion[J].,2008,(03):227.
[10]黄国宏 刘刚.一种新的基于DCT变换的线性判别分析[J].计算机技术与发展,2008,(06):97.
 HUANG Guo-hong,LIU Gang.A Novel Linear Discriminant Analysis Based on DCT[J].,2008,(03):97.

更新日期/Last Update: 2018-04-03