[1]曲之琳,胡晓飞.基于改进激活函数的卷积神经网络研究[J].计算机技术与发展,2017,27(12):77-80.[doi:10.3969/ j. issn.1673-629X.2017.12.017]
 QU Zhi-lin,HU Xiao-fei.Research on Convolutional Neural Network Based on Improved Activation Function[J].Computer Technology and Development,2017,27(12):77-80.[doi:10.3969/ j. issn.1673-629X.2017.12.017]
点击复制

基于改进激活函数的卷积神经网络研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年12期
页码:
77-80
栏目:
智能、算法、系统工程
出版日期:
2017-12-10

文章信息/Info

Title:
Research on Convolutional Neural Network Based on Improved Activation Function
文章编号:
1673-629X(2017)12-0077-04
作者:
曲之琳胡晓飞
南京邮电大学 通信与信息工程学院,江苏 南京 210003
Author(s):
QU Zhi-linHU Xiao-fei
School of Telecommunications &Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China
关键词:
卷积神经网络深度学习人工智能激活函数
Keywords:
convolutional neural networkdeep learningartificial intelligenceactivation function
分类号:
TP301
DOI:
10.3969/ j. issn.1673-629X.2017.12.017
文献标志码:
A
摘要:
卷积神经网络是对于人脑的高度抽象,它是深度学习的重要组成部分。 对于卷积神经网络的研究,一方面有助于更准确地进行图像的分类与识别,另一方面,有助于人类更真实地模拟人脑,为人工智能的发展指明了方向。 分析比较了Sigmoid、Tanh、ReLu、Softplus4 种激活函数的优缺点。 结合 ReLu 和 Softplus 两种激活函数的优点,设计并构造了一种分段激活函数。 最后,基于 Theano 框架和这 5 种激活函数,分别构建了 5 种卷积神经网络,并对 Cifar-10 数据集进行了分类识别。 实验结果表明,基于改进后的激活函数所构造的卷积神经网络,不仅收敛速度更快,而且可以更加有效地提高分类的准确率。
Abstract:
Convolutional neural network is a high degree of abstraction to the human brain and an important part of deep learning. For research on it,on the one hand,it is helpful for a more accurate image classification and recognition. On the other hand,the human brain can be more truly simulated,which points out the direction for the development of artificial intelligence. First the advantages and disadvantages of four kinds of activation functions such as Sigmoid,Tanh,ReLu and Softplus are analyzed and compared. Then,combined with the advantages of ReLu and Softplus,a piecewise activation function is designed and constructed. Finally,based on Theano framework and these activation functions,five convolutional neural networks are established respectively for classification recognition on the Cifar-10 data sets. The experimental results show that the convolution neural network based on the improved activation function not only converges faster,but also improves the classification accuracy more effectively.

相似文献/References:

[1]崔凤焦.表情识别算法研究进展与性能比较[J].计算机技术与发展,2018,28(02):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
 CUI Feng-jiao.Research and Performance Comparison of Facial Expression Recognition Algorithm[J].Computer Technology and Development,2018,28(12):145.[doi:10.3969/j.issn.1673-629X.2018.02.031]
[2]张丹丹,李雷. 基于PCANet-RF的人脸检测系统[J].计算机技术与发展,2016,26(02):31.
 ZHANG Dan-dan,LI Lei. Face Detection System Based on PCANet-RF[J].Computer Technology and Development,2016,26(12):31.
[3]施泽浩,赵启军.基于全卷积网络的目标检测算法[J].计算机技术与发展,2018,28(05):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
 SHI Ze-hao,ZHAO Qi-jun.Object Detection Algorithm Based on Fully Convolutional Neural Network[J].Computer Technology and Development,2018,28(12):55.[doi:10.3969/j.issn.1673-629X.2018.05.013]
[4]郭子琰,舒心,刘常燕,等.基于ReLU 函数的卷积神经网络的花卉识别算法[J].计算机技术与发展,2018,28(05):154.[doi:10.3969/j.issn.1673-629X.2018.05.035]
 GUO Ziyan,SHU Xin,LIU Changyan,et al.A Recognition Algorithm of Flower Based on Convolution Neural Network with ReLU Function[J].Computer Technology and Development,2018,28(12):154.[doi:10.3969/j.issn.1673-629X.2018.05.035]
[5]缪宇杰,吴智钧,宫 婧.基于3D 卷积的视频错帧筛选方法[J].计算机技术与发展,2018,28(05):179.[doi:10.3969/ j. issn.1673-629X.2018.05.040]
 MIAO Yu-jie,WU Zhi-jun,GONG Jing.A Wrong Temporal-order Frames Identification Method Based on 3D Convolution[J].Computer Technology and Development,2018,28(12):179.[doi:10.3969/ j. issn.1673-629X.2018.05.040]
[6]吴玉枝,吴志红,熊运余.基于卷积神经网络的小样本车辆检测与识别[J].计算机技术与发展,2018,28(06):1.[doi:10.3969/ j. issn.1673-629X.2018.06.001]
 WU Yu-zhi,WU Zhi-hong,XIONG Yun-yu.Vehicle Detection and Recognition of a Few Samples Based on Convolutional Neural Network[J].Computer Technology and Development,2018,28(12):1.[doi:10.3969/ j. issn.1673-629X.2018.06.001]
[7]李相桥,李晨,田丽华,等.卷积神经网络并行训练的优化研究[J].计算机技术与发展,2018,28(08):12.[doi:10.3969/ j. issn.1673-629X.2018.08.003]
 LI Xiang-qiao,LI Chen,TIAN Li-hua,et al.Research on Optimization of Parallel Training for Convolution Neural Network[J].Computer Technology and Development,2018,28(12):12.[doi:10.3969/ j. issn.1673-629X.2018.08.003]
[8]黄法秀,张世杰,吴志红,等.数据增广下的人脸识别研究[J].计算机技术与发展,2020,30(03):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
 HUANG Fa-xiu,ZHANG Shi-jie,WU Zhi-hong,et al.Research on Face Recognition Based on Data Augmentation[J].Computer Technology and Development,2020,30(12):67.[doi:10. 3969 / j. issn. 1673-629X. 2020. 03. 013]
[9]邓宗平,赵启军,陈虎. 基于深度学习的人脸姿态分类方法[J].计算机技术与发展,2016,26(07):11.
 DEND Zong-ping,ZHAO Qi-jun,CHEN Hu. Face Pose Classification Method Based on Deep Learning[J].Computer Technology and Development,2016,26(12):11.
[10]陈浩翔,蔡建明,刘铿然,等. 手写数字深度特征学习与识别[J].计算机技术与发展,2016,26(07):19.
 CHEN Hao-xiang,CAI Jian-ming,LIU Keng-ran,et al. Deep Learning and Recognition of Handwritten Numeral Features[J].Computer Technology and Development,2016,26(12):19.
[11]李宏林. 分析式纹理合成技术及其在深度学习的应用[J].计算机技术与发展,2017,27(11):7.
 LI Hong-lin. Analyzed Texture-synthesis Techniques and Their Applications in Deep Learning[J].Computer Technology and Development,2017,27(12):7.
[12]陈强锐,谢世朋.基于深度学习的肺部肿瘤检测方法[J].计算机技术与发展,2018,28(04):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
 CHEN Qiang-rui,XIE Shi-peng.Lung Cancer Detection Method Based on Deep Learning[J].Computer Technology and Development,2018,28(12):201.[doi:10.3969/ j. issn.1673-629X.2018.04.043]
[13]高翔,陈志,岳文静,等.基于视频场景深度学习的人物语义识别模型[J].计算机技术与发展,2018,28(06):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
 GAO Xiang,CHEN Zhi,YUE Wen-jing,et al.Human Semantic Recognition Model Based on Video Scene Deep Learning[J].Computer Technology and Development,2018,28(12):53.[doi:10.3969/ j. issn.1673-629X.2018.06.012]
[14]阮航,王立春.基于特征图的车辆检测和分类[J].计算机技术与发展,2018,28(11):39.[doi:10.3969/ j. issn.1673-629X.2018.11.009]
 RUAN Hang,WANG Li-chun.Vehicle Detection and Classification Based on Feature Map[J].Computer Technology and Development,2018,28(12):39.[doi:10.3969/ j. issn.1673-629X.2018.11.009]
[15]刘华春.卷积神经网络在车牌识别中的应用研究[J].计算机技术与发展,2019,29(04):128.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 026]
 LIU Hua-chun.Research on Application of Convolutional Neural Network in License Plate Recognition[J].Computer Technology and Development,2019,29(12):128.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 026]
[16]倪申龙,曾接贤,周世健.整体车牌图像超分辨率重建研究[J].计算机技术与发展,2019,29(04):195.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 039]
 NI Shen-long,ZENG Jie-xian,ZHOU Shi-jian.Study on Reconstruction of Overall Image of License Plate[J].Computer Technology and Development,2019,29(12):195.[doi:10. 3969 / j. issn. 1673-629X. 2019. 04. 039]
[17]王山海,刘谦,马鑫鑫.基于图像识别的人工影响天气业务的研究[J].计算机技术与发展,2019,29(05):172.[doi:10. 3969 / j. issn. 1673-629X. 2019. 05. 036]
 WANG Shan-hai,LIU Qian,MA Xin-xin.Research on Weather Modification Based on Image Recognition[J].Computer Technology and Development,2019,29(12):172.[doi:10. 3969 / j. issn. 1673-629X. 2019. 05. 036]
[18]刘华春,侯向宁.采用视觉显著性和卷积网络的车牌定位算法[J].计算机技术与发展,2019,29(06):74.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 016]
 LIU Hua-chun,HOU Xiang-ning.A License Plate Location Algorithm Using Visual Saliency and Convolutional Network[J].Computer Technology and Development,2019,29(12):74.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 016]
[19]黄 鹤,荆晓远,董西伟,等.基于 Skip-gram 的 CNNs 文本邮件分类模型[J].计算机技术与发展,2019,29(06):143.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 030]
 HUANG He,JING Xiao-yuan,DONG Xi-wei,et al.CNNs-Highway Text Message Classification Model Based on Skip-gram[J].Computer Technology and Development,2019,29(12):143.[doi:10. 3969 / j. issn. 1673-629X. 2019. 06. 030]
[20]夏瀚笙,沈 峘,胡 委.基于人体关键点的分心驾驶行为识别[J].计算机技术与发展,2019,29(07):1.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 001]
 XIA Han-sheng,SHEN Huan,HU Wei.Detecting Distraction of Drivers Using Human Pose Keypoints[J].Computer Technology and Development,2019,29(12):1.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 001]

更新日期/Last Update: 2018-03-06