[1]陈亚[],李萍[]. 人工鱼群神经网络在短期负荷预测中的应用[J].计算机技术与发展,2017,27(10):189-192.
 CHEN Ya[],LI Ping[]. Application of Artificial Fish Swarm Neural Network in Short Term Load Forecasting[J].,2017,27(10):189-192.
点击复制

 人工鱼群神经网络在短期负荷预测中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年10期
页码:
189-192
栏目:
应用开发研究
出版日期:
2017-10-10

文章信息/Info

Title:
 Application of Artificial Fish Swarm Neural Network in Short Term Load Forecasting
文章编号:
1673-629X(2017)10-0189-04
作者:
 陈亚[1]李萍[2]
 1.宁夏大学 物理与电子电气工程学院;2.宁夏沙漠信息智能感知重点实验室
Author(s):
 CHEN Ya[1]LI Ping[2]
关键词:
 人工鱼群算法Elman神经网络短期负荷预测预测精度
Keywords:
 artificial fish swarm algorithmElman neural networkshort-term electric load predictionprediction accuracy
分类号:
TP39
文献标志码:
A
摘要:
 
由于电力负荷是电力系统发展的基础,提高电力负荷预测的准确性有利于电力系统的快速发展.Elman神经网络预测方法容易陷入局部解,且收敛速度慢,而人工鱼群算法具有较优的全局收敛能力及较快的寻优速度.为了提高短期电力负荷预测的精度,利用人工鱼群算法对Elman神经网络的初始权值和阈值进行了优化,提出并建立了一种新的人工鱼群神经网络短期负荷预测模型.以某市的历史负荷数据作为训练样本,将人工鱼群神经网络预测模型与传统Elman神经网络预测模型进行对比实验.实验结果表明,相对于传统Elman神经网络预测模型,人工鱼群神经网络模型的计算误差更小,预测精度更高,收敛速度更快,具有较好的短期电力负荷预测应用前景.
Abstract:
 The electric power load is the basis of development of electric power system,so the improvement of predicting accuracy of the former is beneficial to the latter. Elman neural network forecasting method is easy to fall into local solution and its convergence rate is slow. The artificial fish swarm algorithm has better global convergence ability and higher optimization speed. To improve the accuracy of short-term power load forecasting,the artificial fish swarm algorithm is adopted to optimize the initial weights and thresholds of Elman neural network. Then a new forecast model of short-term power load is built and applied to forecast the short-term power load. With the historical load data of a city as training samples,the artificial fish swarm neural network prediction model and the traditional Elman neural network prediction model are employed in contrast experiments. The results show that it has smaller computational error,higher accuracy and faster convergence rate compared with the traditional Elman neural network prediction model and has better application prospects in short term power load forecasting.

相似文献/References:

[1]王会颖 章义刚.求解聚类问题的改进人工鱼群算法[J].计算机技术与发展,2010,(03):84.
 WANG Hui-ying,ZHANG Yi-gang.An Improved Artificial Fish- Swarm Algorithm of Solving Clustering Analysis Problem[J].,2010,(10):84.
[2]古明家 宣士斌 廉侃超 李永胜.基于蚁群和人工鱼群算法融合的QoS路由算法[J].计算机技术与发展,2009,(07):145.
 GU Ming-jia,XUAN Shi-bin,LIAN Kan-chao,et al.QoS Routing Algorithm Based on Combination of Modified Ant Colony Algorithm and Artificial Fish Swarm Algorithm[J].,2009,(10):145.
[3]史学军,方金鑫,于舒娟.基于全局人工鱼群算法的盲均衡[J].计算机技术与发展,2013,(05):75.
 SHI Xue-jun,FANG Jin-xin,YU Shu-juan.Blind Equalization Based on Global Artificial Fish Swarm Algorithm[J].,2013,(10):75.
[4]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(10):1.
[5]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(10):5.
[6]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(10):13.
[7]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(10):21.
[8]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(10):25.
[9]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(10):29.
[10]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(10):34.
[11]刘晓丽,熊良鹏. 改进的人工鱼群算法在机器人控制中的应用[J].计算机技术与发展,2015,25(05):200.
 LIU Xiao-li,XIONG Liang-peng. Application of Robot Control Using Improved Artificial Fish Swarm Algorithm[J].,2015,25(10):200.
[12]彭培真,俞毅,王兆嘉,等. 基于单纯形的改进全局人工鱼群优化算法[J].计算机技术与发展,2015,25(08):75.
 PENG Pei-zhen,YU Yi,WANG Zhao-jia,et al. Improved Global Artificial Fish Swarm Algorithm Based on Simplex Method[J].,2015,25(10):75.
[13]秦军[],翟钊[]. 基于Hadoop MapReduce的组合服务性能优化研究[J].计算机技术与发展,2016,26(05):61.
 QIN Jun[],ZHAI Zhao[]. Research on Composite Service Performance Optimization Based on Hadoop MapReduce[J].,2016,26(10):61.
[14]唐莉[],张正军[],王俐莉[]. 人工鱼群算法的改进[J].计算机技术与发展,2016,26(11):37.
 TANG Li[],ZHANG Zheng-jun[],WANG Li-l. Improvement of Artificial Fish Swarm Algorithm[J].,2016,26(10):37.

更新日期/Last Update: 2017-11-24