[1]尚宇,张甜. 人工神经网络在HRV分析中的应用研究[J].计算机技术与发展,2017,27(09):141-144.
 SHANG Yu,ZHANG Tian. Research on Application of Artificial Neural Network in HRV Analysis[J].,2017,27(09):141-144.
点击复制

 人工神经网络在HRV分析中的应用研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年09期
页码:
141-144
栏目:
应用开发研究
出版日期:
2017-09-10

文章信息/Info

Title:
 Research on Application of Artificial Neural Network in HRV Analysis
文章编号:
1673-629X(2017)09-0141-04
作者:
 尚宇张甜
 西安工业大学 电子信息工程学院
Author(s):
 SHANG YuZHANG Tian
关键词:
 心率变异性人工神经网络时域分析 频域分析BP网络
Keywords:
 HRVANNtime-domain analysisfrequency domain analysisBP networks
分类号:
TP39
文献标志码:
A
摘要:
 心率变异性(Heart Rate Variability,HRV)反映了心脏神经活动的紧张性和均衡性,是一种检测自主神经性活动的非侵入性指标.近几十年来大量研究已充分肯定了自主神经活动与多种疾病有关系,特别是与某些心血管疾病的死亡率,尤其是猝死率有关.为此,在应用人工神经网络进行HRV分析的基础上,采用误差反向传播网络(Back Propagation,BP)及其改进算法,实现了对HRV信号的初步识别.对不同算法神经网络进行了参数设置尝试和训练测试.测试结果表明,隐层节点数为10及学习速率为0.5时,采用附加动量法(动量学习率为0.3)即可保证整个神经网络训练及检测识别的正确率为93.96%,且稳定性较好.应用人工神经网络算法分析HRV,为心电信号智能分析提供了新的研究领域和应用空间.
Abstract:
 HRV reflects the tension and balance of cardiac nerve activity,which is a non-invasive index to detect autonomic nervous ac-tivity. In recent years,a lot of research has fully affirmed the autonomic nervous activity correlated a variety of diseases,especially with some cardiovascular disease mortality,even the sudden death rate. Therefore,on the basis of application of the artificial neural network to HRV analysis,the error Back Propagation ( BP) and its improved algorithm is utilized,in order to realize the preliminary identification of the HRV signals. The diverse neural network is conducted in parameters setting and training test. The test results show that when the num-ber of hidden nodes is 10 and the learning rate is 0. 5,the additional momentum (momentum learning rate is 0. 3) is used to guarantee the correct rate of 93. 96% and better stability in the neural network training and recognition. The artificial neural network algorithm is ap-plied to the HRV analysis,which expands the new research field and space for the intelligent analysis of the ECG signal.

相似文献/References:

[1]单立场 蔡坤宝 王永东.多分辨率分析在HRV信号分析中的应用[J].计算机技术与发展,2008,(01):250.
 SHAN Li-chang,CAI Kun-bao,WANG Yong-dong.Application of Multi Resolution Analysis to HRV Signal Analysis[J].,2008,(09):250.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(09):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(09):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(09):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(09):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(09):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(09):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(09):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(09):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(09):43.

更新日期/Last Update: 2017-10-24