[1]傅赟,王桂丽,周旭廷,等. 交通监控系统中视频运动目标检测算法研究[J].计算机技术与发展,2017,27(08):156-158.
 FU Yun,WANG Gui-li,ZHOU Xu-ting,et al. Investigation on Video Moving Target Detection Algorithm in Traffic Monitoring System[J].,2017,27(08):156-158.
点击复制

 交通监控系统中视频运动目标检测算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
27
期数:
2017年08期
页码:
156-158
栏目:
应用开发研究
出版日期:
2017-08-10

文章信息/Info

Title:
 Investigation on Video Moving Target Detection Algorithm in Traffic Monitoring System
文章编号:
1673-629X(2017)08-0156-03
作者:
傅赟王桂丽周旭廷侯学鹏
 安徽师范大学 物理与电子信息学院
Author(s):
 FU YunWANG Gui-liZHOU Xu-tingHOU Xue-peng
关键词:
 城市交通运动目标检测光流法帧间差分法背景差分法
Keywords:
 urban trafficmoving object detectionoptical flow methodinter frame difference methodbackground difference method
分类号:
TP301.6
文献标志码:
A
摘要:
 运动目标检测不仅是计算机视觉领域里一项重要的研究内容,也是城市交通监控系统中至关重要的部分,在机器人导航、无人驾驶、医学图像处理以及视频压缩和传输领域都有广泛的运用.在研究光流法、帧间差分法、背景差分法三种目标检测算法原理并对比分析各算法优缺点和适用范围的基础上,在城市交通监控系统中对所选取的同一视频帧分别进行了算法对比仿真实验,并对仿真结果进行了对比分析.仿真实验结果表明,光流法适用于运动状态下的动态目标检测,帧间差分法适用于车速较低的路段,与其他算法相比,背景差分法在城市交通监控系统中的目标检测效果最好,同时也具有运用边缘检测和数学形态学对车辆目标进行标记的能力,可使目标检测更为准确、有效.
Abstract:
 Detection of moving target not only is a key research content in the field of computer vision,but also plays an important role in the urban traffic monitoring system,which has been widely used in robot navigation,unmanned vehicle,medical image processing,video compression and transmission field and so on.Based on investigation of the principles,advantages and disadvantages,and applications ranges of three different kinds of target detection algorithm like the optical flow method,frame difference method,and background difference method,comparative simulation experiments of the algorithms have been conducted with the same video frame selected from city traffic monitoring system as well as comparative analysis on the simulation results.Experiment results have shown that optical flow method is suitable for dynamic target detection under the motion state,and frame difference method can be used for low speed,while the background difference method is the most suitable in city traffic monitoring system of target detection effects compared with other algorithms,and also that edge detection and mathematical morphology tagged on vehicle targets can promote the accuracy and effectiveness of target detection.

相似文献/References:

[1]张宝磊 任军号 巩岁平.出行分布预测模型及其系数标定算法研究[J].计算机技术与发展,2011,(04):21.
 ZHANG Bao-lei,REN Jun-hao,GONG Sui-ping.Forecast Model of Trip Distribution and Coefficient Calibration Algorithm[J].,2011,(08):21.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(08):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(08):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(08):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(08):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(08):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(08):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(08):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(08):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(08):43.
[11]梅朵[],郑黎黎[],刘春晓[],等. 基于混合算法优化SVM的短时交通流预测[J].计算机技术与发展,2017,27(11):92.
 MEI Duo[],ZHENG Li-li[],LIU Chun-xiao[],et al. A Short-term Traffic Flow Prediction Model Based on Support Vector Machine Optimized by Hybrid Algorithm[J].,2017,27(08):92.

更新日期/Last Update: 2017-09-21